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Abstract
Background: Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional
regulator of viral and cellular genes. In this study we have examined in detail the determinants for
Tax-mediated transcriptional activation.

Results: Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets,
herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen
with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-
responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most
effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize
the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is
preferred by Tax for activation. When LTR transcription was reconstituted by substituting either
κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs
using surfaces which are different from that utilized for CREB interaction. Finally, we employed
artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to
show for the first time that Tax has transcriptional activity subsequent to the assembly of an
initiation complex at the promoter.

Conclusions: Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I
TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for
transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter.

Background
In eukaryotes, transcription by RNA polymerase II
requires the orderly recruitment of basal transcription fac-
tors and activators to the core promoter and enhancers,

respectively [1,2]. The core promoter contains the tran-
scription initiation site, and it provides the docking sites
for the basal transcription factors that nucleate the assem-
bly of a functional preinitiation complex (PIC). The TATA
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box is one of four major core promoter elements, and it is
specifically recognized by the TATA-binding protein
(TBP), a subunit of the basal transcription factor TFIID
which also contains at least 14 TBP-associated factors
(TAFs). On the other hand, enhancers are bound by
sequence-specific transcriptional activators that are
thought to promote PIC assembly through interactions
with components of the basal transcription machinery.

Human T-cell leukemia virus type I (HTLV-I) Tax protein
is a unique transcriptional regulator [3]. Tax can modulate
the HTLV-I long terminal repeats (LTR), heterologous
viral promoters, and a variety of cellular genes. In most
context, Tax acts as a potent transcriptional activator
through Tax-responsive DNA elements that are recog-
nized by cellular transcription factors CREB, NFκB and
serum response factor (SRF) [4-6]. For activation of the
HTLV-I LTR, Tax targets three imperfectly conserved 21-bp
direct repeats flanked by GC-rich sequences. In this sce-
nario, Tax forms a ternary complex with CREB and the 21-
bp repeat through physical interaction with CREB and
direct contact with the flanking GC-rich sequences [7-9].
Tax-induced activation of other promoters is thought to
be mediated through protein-protein interactions. Thus,
Tax is a pleiotropic transcriptional activator that targets
multiple enhancer elements through multiple cellular
transcription factors.

To date, the molecular mechanisms for Tax trans-activa-
tion have been well studied. Due to its pleiotropic activi-
ties, there are likely nuances to Tax's activity which remain
unrevealed. Currently, we understand Tax to harbor a
minimal activation domain [10], to interact with basal
transcription factors such as TBP [11], to form a homo-
dimer [12-14], and to stimulate the dimerization of cellu-
lar regulatory factors such as CREB [15,16] and IKK-γ [17].
Moreover, we also know that Tax can directly engage tran-
scriptional coactivators such as CREB-binding protein,
p300 and P/CAF [18-20]. However, it remains unclear
what is Tax's optimal preference for an enhancer – TATAA
configuration. It has also been unaddressed whether Tax
has a transcriptional activity after the formation of an ini-
tiation complex at the TATAA-box.

In mammalian cells, the artificial recruitment of TBP suf-
ficiently activates transcription from some promoters [21-
24]. It is understood that the structure of core promoter is
one important determinant for this activation [23]. On
the other hand, DNA-tethered TBP can also work synergis-
tically with selective natural activators such as human
immunodeficiency virus type 1 (HIV-1) Tat protein [21-
23] and cytomegalovirus IE2 protein [25]. In this regard,
it is not known whether TBP recruitment suffices for acti-
vation of HTLV-I minimal promoter. Nor is it clear
whether Tax can cooperate with promoter-tethered TBP.

Here, we have constructed a series of chimeric enhancer-
TATAA reporters to analyze the functional roles of these
transcription elements in Tax-mediated activation. We
observed that Tax activates the HTLV-I 21-bp repeats more
potently than other enhancer elements. Analysis of ten
mutants of Tax revealed that Tax utilizes different
domains to target different cellular factors. We also found
that multiple bZIP transcription factors including the
newly-identified LZIP are involved in Tax activation of
HTLV-I LTR. Finally, two other salient findings are that
optimal Tax-responsiveness is specified by the HTLV-I-
specific TATAA element, and that Tax synergizes with arti-
ficially recruited, DNA-tethered, TBP in a phase of tran-
scription after the assembly of an initiation complex at the
promoter.

Results
Specific preference by Tax for only one enhancer element
Tax can activate transcription through 21-bp repeats, CRE,
κB site or SRE [4-9]. However, a direct head-to-head com-
parison between the relative preferences of Tax for each of
these elements is complicated by the context of additional
DNA elements in the various promoters tested to date (i.e.
the HTLV-I LTR versus the HIV-1 LTR versus the inter-
leukin-2 promoter). To directly compare enhancer motifs,
they should be placed in identical TATAA-context and
tested in identical experimental settings. Towards this
end, we constructed a series of six reporters to dissect the
ordered preference of Tax for various enhancers.

Each reporter contains two copies of enhancer motifs (21-
bp repeats, CRE, AP1, Sp1, κB or SRE) and a minimal
HTLV-I TATAA promoter (Fig. 1A). Because all reporters
have the same HTLV-1 minimal promoter and are other-
wise devoid of any known enhancer elements, side-by-
side comparisons would reflect directly the contribution
of the variously added cis-enhancer. We observed that the
κB- and CRE- motifs had the highest basal activities in
HeLa cells in the absence of Tax (Fig. 1B, lanes 3, 4, 9 and
10; and Fig. 1C, columns 3 and 6 compared to column 1).
Of significant interest, in stark contrast to the cellular CRE
elements, the reiterated HTLV-I 21-bp repeats (normally
considered as viral CRE elements) and the SRE exerted lit-
tle or no basal activity (Fig. 1B, lanes 1, 2, 11 and 12; and
Fig. 1C, lanes 2 and 7 compared to lane 1). The AP1 and
Sp1 sites were moderately active (Fig. 1B, lanes 5–8 and
Fig. 1C, lanes 4 and 5). Hence for basal expression in the
context of the HTLV-I TATAA promoter, κB, CRE > AP1,
Sp1 >> 21 bp, SRE.

When the reporters were tested in the presence of Tax, a
different pattern emerged. Transcription from the 21-bp
repeats was stimulated approximately 70-fold (Fig. 1D,
lane 2 compared to lane 1) while that from the Sp1 site,
not prototypically known to be responsive to Tax, was not
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Relative responsiveness of enhancers to Tax in HeLa cellsFigure 1
Relative responsiveness of enhancers to Tax in HeLa cells. (A) CAT reporter plasmid. Each plasmid contains two copies of 
enhancer elements (21-bp repeats, CRE, AP1, Sp1, κB and SRE) and one copy of HTLV-I minimal promoter (HTLV TATAA). 
The enhancer (Enh.) sequences are shown in green. (B) A representative example of CAT assay. Increasing amounts (5 to 10 
µg) of p21-HTLV-CAT (lanes 1 and 2), pCRE-HTLV-CAT (lanes 3 and 4), pAP1-HTLV-CAT (lanes 5 and 6), pSP1-HTLV-CAT 
(lanes 7 and 8), pKB-HTLV-CAT (lanes 9 and 10) and pSRE-HTLV-CAT (lanes 11 and 12) were transfected into HeLa cells. 
CAT assays were performed 48 h after transfection. AcCM: acetyl chloramphenicol. CM: chloramphenicol. (C) Basal transcrip-
tional activities of enhancer elements. Five microgram of plasmids containing the HTLV TATAA alone (pHTLV-CAT; column 1) 
or the indicated enhancer elements (columns 2 to 7) were transfected into HeLa cells and the relative CAT activities were 
compared. CAT activity from pKB-HTLV-CAT-transfected HeLa cells was taken as 100% (lane 6). (D) Tax-dependent tran-
scriptional activities of enhancer elements. The same plasmids as in C plus 1 µg of Tax-expressing plasmid pIEX were co-trans-
fected into HeLa cells and the CAT assays were performed. Fold activation in the presence of Tax versus in the absence of Tax 
was calculated and compared. All CAT results are representative of three independent experiments.
Page 3 of 12
(page number not for citation purposes)



Retrovirology 2004, 1:18 http://www.retrovirology.com/content/1/1/18
activated significantly over the activity of the HTLV-I min-
imal promoter (Fig. 1D, lane 5 compared to lane 1). All
other responses to Tax were markedly weaker than that
seen from the 21-bp repeats. Hence, for all practical pur-
poses, only a duplicated 21-bp repeat in the context of iso-
lated placement upstream of an authentic HTLV-I
minimal TATAA box could be regarded as significantly
Tax-responsive in HeLa cells.

We repeated the experiments in Jurkat T lymphocytes and
obtained similar results (Fig. 2). Thus, while the κB and
CRE enhancers displayed the highest activities in the
absence of Tax (Fig. 2B, lanes 3 and 6 compared to lanes
5, 4, 2, 1, and 7), only the 21-bp repeats were highly
responsive to Tax (Fig. 2A, lanes 1 and 2; Fig. 2C, lane 2).
Our results from HeLa and Jurkat cells consistently sup-
port the preferential activation of the 21-bp repeats by
Tax.

Multiple activation surfaces are configured in Tax
In Fig. 1D, the 21-bp repeats were activated by Tax >75
fold, while κB and SRE motifs were activated five and
three fold, respectively. The low activation of the latter
motifs, although comparatively less significant than that
from the 21 bp elements, was real and reproducible. To
further understand how Tax works, we wondered whether
the different magnitudes of activation were due to quanti-
tative or qualitative differences in protein-protein interac-
tion. To address this question, we examined the separate
responses of the three motifs to a battery of Tax mutants.

Previously we had characterized 47 mutations in Tax that
affect transcriptional activity [26]. Here we selected 10 of
these Tax mutants to shed light on the discrete surfaces
used by Tax to mediate effects on 21-bp repeats, κB and
SRE. All mutants were expressed to comparable levels in
HeLa cells (data not shown). Their relative activities on
21-bp repeats, κB and SRE were assessed (Fig. 3).

Based on percentage of activation relative to wild type Tax,
we saw three patterns of mutant activity for 21 bp, κB and
SRE (Fig. 3). Hence, the activation domain mutant Tax
L320G [10] and the zinc finger mutant Tax H52Q [26]
were defective in activating either 21-bp repeats or SRE,
but were fully competent for κB (Fig. 3, lanes 4 and 10).
By contrast, the N-terminal mutant Tax ∆3–6 and the
point mutant Tax S258A activated 21-bp repeats and SRE
well, but did not activate κB (Fig. 3, lanes 2 and 7). Addi-
tionally, mutants Tax ∆94–114, Tax S150A and Tax ∆337–
353 were active on all three motifs (Fig. 3, lanes 5, 6 and
11), while neither Tax ∆2–58, Tax ∆ 284–353 nor Tax
L296G (Fig. 3, lanes 3, 8 and 9) activated any of the
motifs. These non-identical patterns suggest that Tax may
use different contact surfaces to target factors docked at
the 21-bp repeats, κB or SRE. We note some similarity in

the Tax mutant activity profiles for the 21-bp repeats and
SRE suggesting that overlapping surfaces may be utilized.

Amongst bZIP factors, CREB is specifically preferred by 
Tax
Tax activates the HTLV-I LTR through the viral 21-bp
repeats [7-9]. When compared to κB and SRE, the activa-
tion of 21-bp repeats by Tax is particularly effective (Fig. 1
and Fig. 2) and, based on mutant profiles (Fig. 3A), relies
upon unique structural surfaces. Previously, it has been
proposed that bZIP cellular transcription factors including
CREB [9,27,28], ATF4 [29,30] and c-Jun [31] play roles in
Tax activation of 21-bp repeats. However, the relative con-
tribution of these bZIP factors has not been compared
directly in the same experimental setting. Furthermore, it
remains undetermined whether additional newly identi-
fied bZIP proteins may also participate in Tax activation of
21-bp repeats.

We next used dominant-negative proteins to assess the
contributory roles of different bZIP transcription factors
on Tax-dependent activation. We employed several well-
documented dominant-negative inhibitors of CREB and
Jun proteins including KCREB [32], A-CREB [33], A-Fos
[34] and TAM67 [35]. In addition, we constructed domi-
nant-negative versions of ATF4 and LZIP [36] using the
strategies suggested by Vinson et al. [37]. The dominant-
inhibitory activities of the latter two proteins A-ATF4 and
A-LZIP were verified using electrophoretic mobility shift
assay and CAT reporter assay (data not shown). We
interrogated these dominant negative bZIP proteins for
inhibition of Tax activation of HTLV-I LTR (Fig. 4A). All,
KCREB, A-CREB, A-ATF4 and TAM67, suppressed Tax acti-
vation in a dose-dependent manner (Fig. 4A, lanes 3–10
compared to lane 2). However, different dominant nega-
tive inhibitors constructed to the same protein using dif-
ferent strategies might have different potencies. For
example, KCREB contains a mutation of a single amino
acid in the CREB DNA-binding domain [32], whereas A-
CREB was constructed by fusing a designed acidic
amphipathic extension onto the N terminus of the CREB
leucine zipper region [33]. Differential inhibitory effects
of KCREB and A-CREB were observed (Fig. 4A, lanes 3–6).
In light of this, we quantitated and compared the inhibi-
tory activities of dominant negative proteins all con-
structed using the same strategy (Fig. 4B). Since NFκB is
not involved in Tax activation of HTLV-I LTR, we included
a dominant negative form of IKKβ, IKKβ DN, as a neutral
control (Fig. 4B, group 7). When we compared four dom-
inant negative bZIP proteins, A-CREB, A-LZIP, A-Fos and
A-ATF4, constructed using the identical molecular strat-
egy, we observed the most dramatic suppression of Tax
activation of HTLV-I LTR with A-CREB (Fig. 4B, group 3,
red column). The second most significant reduction in
activity was seen with A-LZIP [36] (Fig. 4B, group 6, red
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Relative responsiveness of enhancers to Tax in JPX9 cellsFigure 2
Relative responsiveness of enhancers to Tax in JPX9 cells. (A) A representative example of CAT assay. Tax-expressing plasmid 
pIEX (1 µg) and increasing amounts (0.5 to 1 µg) of p21-HTLV-CAT (lanes 1 and 2), pCRE-HTLV-CAT (lanes 3 and 4), pAP1-
HTLV-CAT (lanes 5 and 6), pSP1-HTLV-CAT (lanes 7 and 8), pKB-HTLV-CAT (lanes 9 and 10) and pSRE-HTLV-CAT (lanes 11 
and 12) were transfected into Jurkat cells. CAT assays were performed 48 h after transfection. AcCM: acetyl chloramphenicol. 
CM: chloramphenicol. (B) Basal transcriptional activities of enhancer elements. One microgram of plasmids containing the 
HTLV TATAA alone (pHTLV-CAT; column 1) or the indicated enhancer elements (columns 2 to 7) were transfected into Jur-
kat cells and the relative CAT activities were compared. CAT activity from pKB-HTLV-CAT-transfected Jurkat cells was taken 
as 100% (lane 6). (D) Tax-dependent transcriptional activities of enhancer elements. The same plasmids as in C plus 1 µg of 
Tax-expressing plasmid pIEX were co-transfected into Jurkat cells and the CAT assays were performed. Fold activation in the 
presence of Tax versus in the absence of Tax was calculated and compared. All CAT results are representative of three inde-
pendent experiments.
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column). Thus, although several bZIP proteins can
redundantly serve to mediate Tax-activation of the LTR, a
clear preference for CREB is revealed by our assay.

To verify the specificity of dominant negative effects, we
also tested the activities of dominant negative proteins on
an NFκB-dependent reporter (Fig. 4B, blue columns).
Noticeably, none of the dominant negative bZIP proteins
had an effect on Tax activation of NFκB (Fig. 4B, groups
3–6 compared to group 2, blue columns). In contrast, the
expression of IKKβ DN led to more than 50% suppression
of NFκB activity (Fig. 4B, group 7, blue column). These
results ruled out the possibility that A-CREB, A-ATF4, A-
Fos and A-LZIP might non-specifically inhibit
transcription.

Functional significance of the HTLV-I TATAA element to 
transcriptional activation by Tax
In the course of our analyses, we noted that Tax can acti-
vate the HTLV-I minimal TATAA-promoter without any
known enhancer element by approximately 4-fold (Fig.
1D, lane 1). This responsiveness of the HTLV-I minimal
promoter is compatible with the concept that the core
promoter can also be an important determinant of tran-
scriptional specificity [2]. We next asked whether all
TATAA-elements are recognized by Tax in the same way
for purposes of activated transcription. Hence, we con-
structed reporter plasmids that contain two 21-bp repeats
and a minimal TATAA promoter from HTLV-I, HIV-1 or
SV40 (Fig. 5A). Since the TATAA promoters were all
placed within the same context, we consider this a valid
comparison of their relative responsiveness to Tax
activation.

While the basal activities of HIV-1 and SV40 minimal pro-
moters were measurably greater than that from HTLV-I
(Fig. 5C), replacement of the HTLV-I TATAA with the
counterpart element from either HIV-1 or SV40 led to a
significant reduction in Tax responsiveness (Fig. 5B, lanes
4–9; and Fig. 5D). To further verify the importance of the
TATAA-promoter, we asked the same question using a dif-
ferent approach. Above, Tax was recruited presumably to
the downstream TATAA-box via factors bound to the
HTLV-1 21bp repeats (see Fig. 5A). We next investigated
whether the same conclusion could be established if a
Gal4 DNA-binding domain-Tax fusion protein (Gal4-Tax)
was delivered to downstream TATAA element by tethering
to upstream Gal4-binding sites (see Fig. 6A for reporter
schematic). For this assay, we tested the HTLV-I, the HIV-
1, and the E1b TATAA-elements. Consistent with the
results from the 21 bp-TATAA experiments (Fig. 5), Gal4-
Tax activated most strongly the HTLV-I TATAA element
(Fig. 6B, lane 9 and Fig. 6D, group 3) and was minimally
potent for the adenoviral E1b promoter (Fig. 6B, lane 7
and Fig. 6D, group 1). As a control for Gal4-Tax, we

Differential activities of Tax mutants on 21-bp repeats (A), κB (B), and SRE (C) motifsFigure 3
Differential activities of Tax mutants on 21-bp repeats (A), 
κB (B), and SRE (C) motifs. One microgram of plasmid 
expressing the indicated Tax mutants plus 5 µg of p21-HTLV-
CAT, pKB-HTLV-CAT or pSRE-HTLV-CAT was individually 
transfected into HeLa cells. CAT activity from wild type Tax-
transfected cells (lane 1) was taken as 100%.
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checked in parallel the activity of the artificial Gal4-VP16
activator. In contrast with Gal4-Tax, Gal4-VP16 showed
no preference for the various TATAA elements (Fig. 6B,
lanes 4–6 and Fig. 6D). Thus, two lines of evidence here
support that the HTLV-I TATAA promoter is an additional
Tax-specific responsive element.

Evidence for Tax activity after assembly of an initiation 
complex
Artificial recruitment of TBP to some higher eukaryotic
promoters bypasses transcriptional activation by a DNA-
tethered activator [21-24]. When observed at such pro-
moters, this finding is evident that those activators act
mechanistically to enhance TBP recruitment to the TATAA
box. For general transcriptional activation, additional
events subsequent to TBP recruitment are also known to
be functionally critical [21-23,25]. To date, it remains
unclear whether Tax works transcriptionally through a
mechanism solely to recruit TBP or whether there are
additional mechanistic implications after TBP is recruited
to the TATAA-element.

To investigate the mechanism(s) of Tax function with
respect to TBP recruitment, we constructed a series of
reporter plasmids (Fig. 7A) with two copies of 21-bp
repeat, five copies of Gal4-binding sites and a minimal

TATAA sequence from one of four viral promoters (HTLV-
I, HIV-1, SV40 and E1b). We artificially delivered TBP to
each promoter by provision of Gal4-TBP, and we asked
whether Tax has an additional transcriptional effect which
is independent of TBP-recruitment to the TATAA-element.
If Tax were to serve only for TBP-recruitment, then when
TBP is tethered to the TATAA via Gal4-TBP one should
expect to see no transcriptional enhancement from Tax.
Provocatively, for both the HTLV-I and HIV-1 TATAA ele-
ments, Tax stimulated reporter expression greatly over
that already achieved with Gal4-TBP (Fig. 7, groups 1 and
2). Consistent with above findings, the SV40 and E1b
TATAA elements appear to be transcriptionally rate-lim-
ited by TBP recruitment, and Tax has minimal activity on
these promoters. However, the findings from the HTLV-I
and the HIV-1 reporters provide evidence that more than
simply accelerating TBP recruitment Tax can serve tran-
scriptional function(s) subsequent to TBP (TFIID) assem-
bly at the core promoter. This is the first time that Tax has
been shown to have a role subsequent to transcriptional
initiation complex formation at the promoter.

Discussion
Here, we have delineated functional requirements for
both the TATAA promoter and the 21-bp enhancer ele-
ments in HTLV-I Tax mediated activation of the viral LTR.

Specific preference for CREB by TaxFigure 4
Specific preference for CREB by Tax. (A) An example of CAT assay. HeLa cells were transfected with pU3RCAT alone (lane 
1), pU3RCAT plus Tax expression plasmid pIEX (lane 2) or pU3RCAT plus pIEX plus increasing amounts (5 to 10 µg) of plas-
mids expressing the indicated dominant-negative proteins (lanes 3–10). D-Threo-[dichloroacetyl-1-14C]-chloramphenicol was 
as used as substrate in the CAT assay. (B) Influence of dominant-negative proteins on Tax activation. The cells received 
pU3RCAT (red) or pKB-SV40-CAT (blue) only (group 1), pU3RCAT/pKB-SV40-CAT plus Tax-expressing plasmid pIEX (group 
2) or pU3RCAT/pKB-SV40-CAT plus pIEX plus plasmids expressing the indicated dominant-negative proteins. The empty vec-
tor was used to normalize the amount of plasmids given to each group of cells. DN: dominant-negative.
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Tax preferentially activates the HTLV-I minimal TATAA promoterFigure 5
Tax preferentially activates the HTLV-I minimal TATAA pro-
moter. (A) CAT reporter plasmid. Each plasmid contains 
two 21-bp repeats and one copy of minimal promoter 
(TATAA) from HTLV-I, HIV-1 and SV40. The minimal pro-
moter sequences are shown in blue. (B) A representative 
example of CAT assay. The cells received 0, 0.5 and 1 µg of 
Tax-expressing plasmid pIEX and 5 µg of the indicated CAT 
reporter constructs (p21-HTLV-CAT, p21-HIV-CAT and 
p21-SV40-CAT). (C, D) Basal and Tax-induced transcrip-
tional activities. HeLa cells were co-transfected with 5 µg of 
the indicated CAT reporter plasmids (p21-HTLV-CAT, p21-
HIV-CAT and p21-SV40-CAT) plus 0.5 µg of pCMV empty 
vector (w/o Tax) or pIEX (w/ Tax). Basal CAT activity from 
p21-SV40-CAT-transfected cells was taken as 100% (C, col-
umn 3).

DNA-tethered Tax is specifically active on the HTLV-I mini-mal promoterFigure 6
DNA-tethered Tax is specifically active on the HTLV-I mini-
mal promoter. (A) CAT reporter plasmid. Each plasmid con-
tains five tandem copies of Gal4-binding sites and one copy of 
minimal promoter (TATAA) from adenovirus E1b, HIV-1 and 
HTLV-I. The minimal promoter sequences are shown in blue. 
(B) A representative example of CAT assay. The cells were 
co-transfected with 2 µg of a Gal4DB plasmid (pM vector 
alone for lanes 1–3, pGal4-VP16 for lanes 4–6, and pGal4-
Tax for lanes 7–9) and 5 µg of a CAT reporter construct 
(pG5-E1B-CAT for lanes 1, 4 and 7; pG5-HIV-CAT for lanes 
2, 5 and 8; and pG5-HTLV-CAT for lanes 3, 6 and 9). (C, D) 
Basal and activated transcriptional activities. HeLa cells were 
co-transfected with 5 µg of the indicated CAT reporter plas-
mids (pG5-E1B-CAT, pG5-HIV-CAT and pG5-HTLV-CAT) 
plus 2 µg of pM empty vector (C), pGal4-VP16 (D, blue) or 
pGal4-Tax (D, yellow). Basal CAT activity from pG5-HIV-
CAT-transfected cells was taken as 100% (C, column 2).
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To date Tax has been considered solely to initiate tran-
scription. Our study shows for the first time that Tax has a
transcriptional role after assembly of an initiation com-
plex at the promoter.

Preferential requirements for 21-bp repeats, CREB, and 
the HTLV-I TATAA box
HTLV-I is etiologically associated with adult T-cell leuke-
mia [38,39]. Expression of Tax leads to immortalization
of T lymphocytes [40-42] and transformation of rat
fibroblasts [43,44]. Tax is a transcriptional activator that
can interact pleiotropically with several different enhanc-
ers. In addition to the HTLV-I 21-bp repeats, κB and SRE
elements can also mediate Tax activation [4-6]. Amongst
these three enhancers, it is clear that the viral 21-bp
repeats are the most highly responsive to Tax-activation
(Fig. 1D). However, data elsewhere have raised questions
as to the identity of the 21-bp binding bZIP factor which

is best used to mediate Tax activation [30]. In direct com-
parisons, we have used matched A-CREB, A-Jun, A-ATF4
and A-LZIP dominant negative mutants to ask which bZIP
factor is most contributory to Tax activation. In our cell
system, a novel bZIP factor called LZIP [36] can appar-
ently participate in LTR transcription; however, for Tax
activation CREB is preferred over ATF4 or c-Jun (Fig. 4).

Beyond the requirement for the 21-bp enhancer, our
experiments revealed that the HTLV-I TATAA is also specif-
ically preferred by Tax (Fig. 5 and Fig. 6). This finding is
consistent with the general notion that core promoters
can contribute specificity to transcriptional regulation [2].
Indeed, core promoter preference by other cellular and
viral activators such as Sp1, VP16 and Tat have been doc-
umented previously [45-47]. However, the reasons under-
lying core promoter preferences are poorly understood.
TAFs have been suggested to be responsible for the core
promoter selectivity of some activators [48-50]. In this
vein, the interaction of Tax with TBP [11] and TBP-associ-
ated factors such as TAFII28 [51] might provide mechanis-
tic explanations.

Roles of Tax subsequent to TBP recruitment
A provocative notion which emerges from our study is
that Tax can further activate a promoter at which TBP has
already been artificially tethered (Fig. 7). Experiments in
yeast and mammalian cells indicate that many genes can
be activated through artificial recruitment of TBP and
other components of the basal transcription machinery to
their promoters [52,53]. In yeast, artificial recruitment of
TBP bypasses the effect of DNA-tethered activators
whereas the activators fail to activate transcription when
physically fused to components of the basal transcription
machinery [54]. This and other lines of evidence support
the notion that activator-dependent recruitment of TBP
and basal transcription machinery is a major mechanism
for transcriptional activation in yeast cells [54,55]. In con-
trast, artificial recruitment of TBP to mammalian
promoters has not yet been extensively studied. Among
the few promoters examined, some such as the ones from
E1b and thymidine kinase genes can be fully activated by
artificially recruited TBP, while others such as HIV-1 and
c-fos promoters are stimulated weakly [21-25]. On the
other hand, some activators such as VP16, E1A, Tat, E2F1
and IE2 work synergistically with artificially recruited TBP,
while others such as Sp1 cannot further enhance the activ-
ity of DNA-tethered TBP [21,22]. Thus, artificial recruit-
ment of TBP might insufficiently activate transcription in
mammalian cells and different activators might function
at different steps with respect to TBP recruitment. Our
results indicate that DNA-bound TBP can activate HTLV-I
LTR only weakly, but its activity is further enhanced by Tax
(Fig. 6). While such experimental results do not exclude
that under physiological circumstances the primary

Tax further activates a promoter with DNA-tethered TBPFigure 7
Tax further activates a promoter with DNA-tethered TBP. 
(A) CAT reporter plasmid. Each plasmid contains two copies 
of 21-bp repeat, five copies of Gal4-binding sites and one 
copy of minimal promoter (TATAA) from adenovirus HTLV-
I, HIV-1, SV40 and adenovirus E1b. (B) CAT assay. HeLa cells 
were co-transfected with 5 µg of the indicated CAT reporter 
plasmids (p21-G5-HTLV-CAT, p21-G5-HIV-CAT, p21-G5-
SV40-CAT and p21-G5-E1B-CAT) and 2 µg of pGal4-TBP 
(yellow) or 2 µg of pIEX (Tax; pink) or 2 µg of pGal4-TBP 
plus 2 µg of pIEX (Gal4-TBP + Tax; blue). Basal CAT activity 
from cells transfected with pGal4-TBP plus p21-G5-E1B-
CAT was taken as 100% (group 4, yellow).
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function of Tax may be to enhance initiation complex
formation (i.e. TBP-recruitment), they do indicate that
Tax has an additional transcriptional activity that extends
to phases after transcriptional initiation. Currently, we do
not know whether this is at the step of promoter clear-
ance, transcriptional elongation, or some other processes.
However, we do believe that Tax should be added to the
list of mammalian activators that can function at steps
subsequent to TBP recruitment [21-25].

All the transcriptional assays in the present study were
based on transiently transfected reporters. We noted that
transiently transfected and stably integrated promoters
might behave differently [24,56]. Obviously, chromatin
structure and copy numbers can account for significant
differences [56,57]. Future experiments are required to
verify whether the observations established here also hold
for stably integrated HTLV-I LTRs.

Methods
Plasmids
Chloramphenicol acetyltransferase (CAT) reporter plas-
mid pG5CAT was from Clontech. CAT plasmid pU3RCAT
containing the HTLV-I LTR has been previously described
[13]. Other CAT plasmids were derived from pCAT-basic
(Promega). For each construct, one copy of a minimal
promoter and two copies of an enhancer were chemically
synthesized and cloned into pCAT-basic. For example,
pCRE-HTLV-CAT contains two copies of canonical CRE
motif plus one copy of HTLV-I minimal promoter (Fig.
1A). Five copies of Gal4-binding sites as in pG5CAT were
also inserted in some reporters. All constructs have the
same spacing between the TATAA box and the CAT open
reading frame (44 bp) or between the enhancer and the
TATAA box (23 bp).

Sequences of canonical CRE, Sp1, AP1 and κB motifs in
the reporter plasmids have been described [36,58,59].
HTLV-I 21-bp repeats and serum response element (SRE)
in the plasmids were derived from the following synthetic
oligonucleotides: 21-bp repeats, 5'-AGCTTAGGCC
CTGACGTGTCCCCCTGGATCCTAGGCCCTGACGTGTC-
CCCCTA-3' and 5'-AGCTTAG GGGGACACGTCAG-
GGCCTAGGATCCAGGGGGACACGTCAGGGCCTA-3';
SRE, 5'-AGCTACCATATTAGGATCCATATTAGGT-3' and
5'-AGCTACCTAATATGGATCCTAATATGGT-3'. Sequences
of the minimal promoter elements from HTLV-I, HIV-1,
SV40 and adenoviral E1b have been described [60]. The
SV40 early promoter naturally used for expression of the
viral T/t antigens was used.

Expression plasmids for wild type and mutant Tax have
been described elsewhere [26,61]. pIEX is a Tax expression
vector driven by cytomegalovirus IE promoter. Tax
mutants are indicated by the amino acid to be changed,

the position of the residue, and the replacement amino
acid (e.g. Tax S150A). Amino acids that were removed in
mutants are indicated as in Tax ∆3–6. Expression vector
pM for Gal4 DNA binding domain (Gal4DB; amino acids
1–147) was from Clontech. Tax, human TBP and the acti-
vation domain of VP16 fused to Gal4DB were designated
Gal4-Tax, Gal4-TBP and Gal4-VP16, respectively. Expres-
sion plasmids for Gal4-Tax and Gal4-TBP have been
described [10,21]. Expression plasmid for Gal4-VP16 was
from Clontech.

Expression plasmid pRSV-KCREB for the dominant-nega-
tive CREB protein KCREB [32] was kindly provided by Dr.
Richard Goodman. Expression plasmids pCMV-ACREB
and pCMV-AFOS for dominant-negative CREB and AP1
proteins A-CREB [33] and A-Fos [34] were gifts from Dr.
Charles Vinson. Expression plasmid pCMV-TAM67 for
dominant-negative c-Jun protein TAM67 [35] was from
Dr. Michael Birrer. Expression plasmids pCMV-AATF4
and pCMV-ALZIP for dominant-negative ATF4 and LZIP
proteins A-ATF4 and A-LZIP were derived from pCMV500
provided by Dr. Charles Vinson [33,37]. A-ATF4 contains
304–352 amino acids of human ATF4 and A-LZIP con-
tains 175–223 amino acids of human LZIP. A-ATF4 and
A-LZIP can specifically and dominantly inhibit the CRE-
binding and CRE-activating activities of ATF4 and LZIP,
respectively, in electrophoretic mobility shift assay and
CAT reporter assay (data not shown). Expression plasmid
for dominant-negative IKKβ (IKKβ DN) was a gift from
Dr. Michael Karin [62].

Reporter assay
HeLa cells were grown in Dulbecco's modified Eagle's
medium supplemented with fetal calf serum and antibiot-
ics, seeded at 5 × 105 cells/well into six-well culture plates
and transfected using calcium phosphate method as
described [13]. Jurkat cells were cultured in RPMI 1640
medium and transfected by FUGENE 6 reagents (Roche).
CAT activity was assayed as previously described [63].
Briefly, transfected cells were harvested and lysed by freez-
ing and thawing. Protein concentration of clarified lysates
was determined by Bradford reagent (Bio-Rad). Equal
amounts of lysates were mixed with 14C-labeled chloram-
phenicol (Amersham) and acetyl coenzyme A (Calbio-
chem) for CAT reaction. CAT activities were detected using
thin-layer chromatography and quantified by
phosphorimager (Molecular Dynamics). For transfection
of cells, each well received the same dose of plasmids. The
empty vector or pUC19 was added to compensate for the
different amounts of plasmids when necessary.
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