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Abstract 

Human T cell leukemia virus type 1 (HTLV‑1) was the first discovered human retrovirus and the etiologic agent of adult 
T‑cell leukemia and HTLV‑1‑associated myelopathy/tropical spastic paraparesis. Shortly after the discovery of HTLV‑1, 
human T‑cell leukemia virus type 2 (HTLV‑2) was isolated from a patient with hairy cell leukemia. Despite possession 
of similar structural features to HTLV‑1, HTLV‑2 has not been definitively associated with lymphoproliferative disease. 
Since their discovery, studies have been performed with the goal of highlighting the differences between HTLV‑1 and 
HTLV‑2. A better understanding of these differences will shed light on the specific pathogenic mechanisms of HTLV‑1 
and lead to novel therapeutic targets. This review will compare and contrast the two oldest human retroviruses with 
regards to epidemiology, genomic structure, gene products, and pathobiology.
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Introduction
In 1980, Poiesz et  al. reported the discovery of the first 
human retrovirus isolated from a patient with cutane-
ous T-cell lymphoma. This virus is now known as human 
T-cell leukemia virus type-1 (HTLV-1) [1]. In the years 
since, several HTLV subtypes have been discovered: 
HTLV-2 was first identified in a patient with hairy cell 
leukemia [2], while HTLV-3 and HTLV-4 were discov-
ered in bushmeat hunters in Africa [3, 4]. HTLV is a 
zoonotic virus with simian T-cell leukemia virus coun-
terparts found in monkeys. HTLV-1 and HTLV-2 are the 
most well studied subtypes of HTLV. They share roughly 
70% nucleotide similarity and have a similar genome 
structure. Both viruses encode the structural and enzy-
matic proteins shared by all retroviruses, both encode the 
regulatory proteins Tax and Rex, and both feature a RNA 
transcript and protein derived from the negative-sense 
strand of the viral genome. HTLV-1 and HTLV-2 also 
express several accessory proteins that support various 
aspects of virus biology.

HTLV-1 is associated with several diseases, includ-
ing adult T-cell leukemia (ATL) and HTLV-1 associated 

myelopathy/tropical spastic paraparesis (HAM/TSP) [5–
7]. Interestingly, while HTLV-2 was initially discovered in 
a patient with hairy cell leukemia, no clinical correlation 
between HTLV-2 and lymphoproliferative disease has 
been established [2]. Instances of HTLV-2 infected indi-
viduals reporting HAM/TSP-like symptoms have been 
described, but a clear correlation between the virus and 
symptoms has not been clinically established [8, 9].

Many studies over the years have dissected differ-
ences between HTLV-1 and HTLV-2. Recent years have 
focused on differences between the regulatory protein 
Tax and the antisense-derived proteins, HBZ (HTLV-1) 
and APH-2 (HTLV-2). The different cellular pathways 
and signaling cascades that these proteins activate likely 
play a key role in the divergent pathogenic outcomes of 
these viruses. Studies of HTLV-1 are of high importance 
due to the diseases associated with the virus. An increase 
in studies of HTLV-2 would be beneficial to learn what 
this virus lacks causing it to not be associated with dis-
ease. This review will compare and contrast the two old-
est human retroviruses and emphasize the differences 
that exist between these viruses and the potential they 
may have for treatment of HTLV-1-associated diseases.
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Epidemiology and transmission
There are an estimated five to ten million individuals 
infected with HTLV-1 worldwide with endemic regions 
of infection in Southwest Japan, sub-Saharan Africa, 
South America, the Caribbean, and regions of the Mid-
dle East and Australo-Melanesia [10]. The estimate of 
infected individuals is based on data collected from 
1.5 billion individuals within known HTLV-1 endemic 
regions. Reasonably accurate estimations within some 
highly populous, traditionally non-HTLV-1 endemic 
regions have not been completed. Furthermore, large 
population-based studies of HTLV-1 prevalence are 
rare and most current studies analyze specific subsets 
of the population (commonly blood donors or preg-
nant women). Given these limitations, the number of 
HTLV-1 infected individuals is likely much higher than 
the current estimate.

Seroprevalence of HTLV-1 in areas of endemicity is 
estimated at 1–2%, and was found to reach as high as 
20–40% in individuals greater than 50 years of age [10]. 
A major socio-economically and culturally independent 
epidemiological determinant of HTLV-1 seroprevalence 
is age. A 2018 hospital-based cohort study of HTLV-1 
infection in an indigenous Australian population docu-
mented a progressive increase in seropositive rates with 
age reaching 48.5% in men 50–64 years of age [11]. Other 
important determinants of HTLV-1 seroprevalence in 
endemic regions include gender and economic status 
[12]. A study examining over 250,000 individuals in an 
HTLV-1 endemic region found that females had an over-
all higher seroprevalence than males, with males carrying 
a higher seroprevalence between the ages of 16–19 years 
of age and females carrying a comparable or higher sero-
prevalence over the age of 20  years [13]. Additionally, a 
more recent retrospective analysis of more than 3 million 
repeat blood donors in Japan found a much higher inci-
dence of seroconversion in women than in men with an 
estimated 4190 (3215 women and 975 men) new HTLV-1 
infections per year [14]. The association of lower socio-
economic status with higher seroprevalence was spe-
cifically documented in Jamaica, where the unemployed, 
farmers, and laborers were found to carry a higher sero-
prevalence than those reporting student or professional 
occupations [15].

HTLV-1 demonstrates robust genetic stability. Map-
ping of stable nucleotide substitutions specific to varied 
geographic regions has been used to classify virus strains 
into geographic subtypes [16, 17]. The major geographic 
subtypes are Cosmopolitan subtype A, Central African 
subtype B, Australo-Melanesian subtype C, and Central 
African/Pygmies subtype D. Cosmopolitan subtype A 
is the most widespread subtype (endemic subgroups in 
Japan, Central and South America, the Caribbean, North 

and West Africa, and regions of the Middle East). Central 
African subtypes E, F, and G exist, but are rare [18].

With an estimated 800,000 infected individuals world-
wide, HTLV-2 is far less prevalent than HTLV-1. Most 
documented HTLV-2 infected individuals are found in 
the United States (400,000–500,000) highly concentrated 
in the Native American and intravenous drug user popu-
lations. A similar epidemiologic pattern is found in the 
second most HTLV-2 infected region, Brazil (200,000–
250,000). The lower prevalence of HTLV-2 when com-
pared to HTLV-1 reflects specific concentration of 
infection within Native American groups and intrave-
nous drug users [19]. HTLV-2 is divided into four molec-
ular subtypes; a, b, c, and d. HTLV-2a and HTLV-2b are 
commonly found in the Americas and Europe whereas 
HTLV-2c and HTLV-2d are found predominantly in Bra-
zil and Central Africa [20–22].

HTLV-1 and HTLV-2 require cell-to-cell contact for 
efficient transmission [23]. Both viruses utilize Envelope 
(Env) glycoprotein-mediated cell binding and entry. The 
HTLV-1 and HTLV-2 surface (SU) and transmembrane 
(TM) subunits of Env share 65% and 79% residue identity, 
respectively [24]. Despite this high similarity, HTLV-1 
and HTLV-2 utilize a slightly different complex of recep-
tor molecules. HTLV-1 utilizes heparan sulfate proteo-
glycan (HSPG) and neuropilin-1 (NRP1) for binding and 
glucose transporter 1 (GLUT1) for entry. HTLV-2 also 
utilizes NRP1 and GLUT1, but not HSPGs [25–27].

There are three primary modes of HTLV transmis-
sion: vertical (e.g. during parturition or breast feeding), 
parenteral (e.g. transfusion of contaminated blood prod-
ucts, transplantation of infected organs, or intravenous 
drug use), and sexual [28–32]. Breastfeeding is the most 
common route of vertical transmission with risk factors 
including high breast milk proviral load, high HTLV-1 
serum antibody titers, and breast feeding for a dura-
tion greater than 6  months [33–36]. HTLV-1 infection 
via transfusion was first demonstrated by Okochi et  al. 
in Japan [29]. Studies since have found seroconversion 
rates after transfusion with HTLV-1 positive cellular 
blood products to range from 12 to 74% under varying 
conditions [37–39]. HTLV-2 can be transmitted verti-
cally through breastfeeding and horizontally via sexual 
contact, but is most commonly transmitted via sharing 
of contaminated needles amongst intravenous drug users 
[40, 41]. Many countries remain without established 
screening protocols and prevention campaigns for HTLV.

Genome structure and gene expression
HTLV is a member of the delta retrovirus family. These 
viruses are complex retroviruses that express regulatory 
and accessory genes, in addition to the structural and 
enzymatic genes common to all retroviruses. The proviral 
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genomes of HTLV-1 and HTLV-2 are depicted in Fig. 1a, 
b. Both genomes are roughly 9 kb in length and feature 
5′ and 3′ long terminal repeats (LTR), which are direct 
repeats generated during the reverse transcription pro-
cess. The 5′ portions of both genomes encode the struc-
tural and enzymatic gene products (Gag, Pol, Pro, and 
Env). The regulatory and accessory genes are expressed 
from the historically termed ‘pX’ region of the genome. 
The pX region is located 3′ of the structural gene Env. 
Both HTLVs encode an antisense gene, HBZ for HTLV-1 
and APH-2 for HTLV-2, located on the negative or minus 
strand of the proviral genome.

After integration of the proviral genome, several dif-
ferent HTLV transcripts will be produced (Fig.  1a, b 

show a summary of these transcripts). Both viruses 
utilize the viral regulatory protein Tax and the viral 
promoter located in the 5′ LTR to drive viral gene tran-
scription. The viral protein Rex ensures export of the 
unspliced viral mRNAs. The unspliced full-length viral 
mRNA serves as the viral genome for future virions and 
also as the source of Gag, Pol, and Pro proteins. Several 
different splice variant mRNAs are also expressed to 
generate Env, the regulatory proteins, and the accessory 
proteins. Expression of the antisense genes of HTLV is 
not regulated by the Tax or Rex proteins, but is instead 
dependent on host cellular factors to promote tran-
scription. The next few sections will cover the different 
proteins expressed by HTLV-1 and HTLV-2.

Fig. 1 HTLV‑1 and HTLV‑2 genomes and transcripts. a HTLV‑1 genome, transcripts, and associated proteins. b HTLV‑2 genome, transcripts, and 
associated proteins
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Tax‑1 and Tax‑2
HTLV-1 and HTLV-2 encode the pleiotropic transac-
tivator proteins Tax-1 and Tax-2, respectively, which 
share 85% amino acid identity [42]. Both proteins con-
tain CREB-activating domains (N-termini), zinc finger 
domains (N-termini), nuclear localization signals (Tax-1, 
within first 60 amino acids; Tax-2, within first 42 amino 
acids), nuclear export signals (amino acids 189–202) 
and ATF/CREB-activating domains (C-termini regions) 
(Fig. 2a, b) [42–49]. Unlike Tax-2, Tax-1 has two leucine 
zipper-like regions (amino acids 116–145 and 225–232) 

responsible for activation of the canonical and non-
canonical NF-κB pathways, a PDZ-binding motif (PBM; 
C-terminal 4 amino acids), and a secretory signal (C-ter-
minus) [50–52]. Conversely, Tax-2 has a cytoplasmic 
localization domain (amino acids 89–113), which Tax-1 
lacks [53]. Although Tax-1 and Tax-2 have been found 
in both the nuclear and cytoplasmic compartments 
of infected cells, the Tax-2 cytoplasmic localization 
domain explains its primarily cytoplasmic distribution 
when compared to the primarily nuclear distribution of 
Tax-1 [47, 49, 53, 54]. Despite their functional domain 

Fig. 2 Functional domains of Tax‑1, Tax‑2, HBZ, and APH‑2. a HTLV‑1 protein products and functional domains Tax‑1 and HBZ. b HTLV‑2 protein 
products and functional domains of Tax‑2 and APH‑2
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similarities, the Tax-1 and Tax-2 interactomes and subse-
quent effects on cellular pathways are divergent (Fig. 3a).

The NF-κB pathway is a major regulator of inflamma-
tion, cell survival, and proliferation [55]. Tax-1 inter-
actions with NF-κB were first identified in the late 80s, 
and since then multiple reviews have outlined the large 
body of research supporting the role of Tax-1-mediated 
deregulation of the NF-κB pathway in HTLV-1 cellular 
transformation/pathogenesis [56, 57]. Tax-1 and Tax-2 
differentially interact with the NF-κB pathway, which 
plays a role in the differential transforming activity in 
culture and likely contributes to the distinct pathogen-
esis of HTLV-1 and HTLV-2 [42, 58]. Tax-1 constitutively 
activates the canonical NF-κB pathway via combinations 
of interactions with multiple factors, including the IκB 
kinase complex (IKKα; IKKβ; NEMO/IKKγ), inhibitors 
of κB (IκBα; IκBβ), RelA, NEMO-Related Protein (NRP), 
Tax1-binding protein 1 (TAX1BP1), and TAK1-binding-
protien 2 (TAB 2) [59–65]. Tax-1 uniquely interacts with 
the E3 ubiquitin ligase TRAF6, which activates down-
stream signaling of the NF-κB pathway, whereas Tax-2 
does not [66]. Additionally, Tax-1 has been shown to 
promote the NF-κB pathway via IKK activation through 
interaction with another E3 ubiquitin ligase, RNF8, and 
through recruitment of linear ubiquitin chain assembly 

complex [67, 68]. Tax-2 also activates the canonical 
NF-κB pathway, albeit through a smaller subset of inter-
acting partners; NEMO/IKKγ, RelA, NRP, and TAB 2 [53, 
64, 65, 69]. Tax-1, but not Tax-2, also activates the non-
canonical NF-κB pathway by driving NEMO and IKKα-
mediated p100 processing to p52 [70, 71]. Additionally, 
Tax-1, but not Tax-2, was recently shown to induce 
expression of the immunostimulatory ligand OX40 via 
interactions with p52/p100 and RelB; components of 
the non-canonical NF-κB pathway [72]. Both Tax-1 
and Tax-2 have been found to associate with plasma 
membrane-associated lipid raft microdomains, but only 
Tax-1 has been shown to modulate NF-κB activation via 
recruitment of IKK subunits through this association 
[73]. Lastly, Tax-1 and Tax-2 have been shown to interact 
with IκB kinases, IKKε and TBK1; both of which can play 
a role in STAT3, NF-κB, and IFNα activation/induction 
[74, 75].

Tax-1 and Tax-2 activation of the NF-κB pathways, as 
well as other functions, is also regulated by differential 
post-translational modification. It has been shown that 
phosphorylation of Tax-1 is required for nuclear body 
localization with RelA and activation of the NF-κB and 
ATF/CREB pathways [76]. Tax-1 is phosphorylated by 
the serine/threonine kinase CK2 [77].

Fig. 3 Functional comparison of Tax‑1 compared to Tax‑2 and HBZ compared to APH‑2. a Functional comparison of Tax‑1 and Tax‑2. b Functional 
comparison of HBZ and APH‑2
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In addition to phosphorylation, ubiquitylation, 
SUMOylation, and acetylation have been shown to 
play roles in Tax-1 localization and function [54, 66, 
69, 78–81]. The function of Tax-2 ubuiquitylation and 
SUMOylation in NF-κB activation has been explored 
with varied results. A 2012 study by Turci et al. found 
that ubiquitylation and SUMOylation is of simi-
lar importance for both Tax-1- and Tax-2-mediated 
NF-κB activation [78]. In contrast, a 2013 study by 
Journo et al. demonstrated that a Tax-2 mutant defec-
tive for ubiquitylation and SUMOylation maintained 
its ability to drive an NF-κB-dependent promoter [66]. 
Tax-1 acetylation has been shown to promote NF-κB 
pathway activation with the aforementioned phospho-
rylation acting as a pre-requisite [81]. Tax-2 has simi-
larly been shown to be acetylated [81].

Tax-1 and Tax-2 drive virus transcription via their 
respective promoters located in the 5′ LTR. Alteration 
of ATF/CREB function through the ATF/CREB-acti-
vating domains of Tax-1 and Tax-2 is critical for trans-
activation [82]. Tax-1 has been shown to activate or 
repress multiple downstream genes through the ATF/
CREB pathway [42].

Tax-1 contains a C-terminal PDZ binding motif 
(PBM) that Tax-2 lacks. It has been shown that this 
PBM is important for PI3K/AKT/mTOR pathway acti-
vation via attenuation of negative regulators PTEN and 
PHLPP through competitive binding of DLG-1 [83]. 
The PI3K/AKT/mTOR pathway is a widely studied reg-
ulator of cell cycle progression and proliferation. Dif-
ferential activation of this pathway between Tax-1 and 
Tax-2 likely contributes to the distinct pathobiology 
of HTLV-1 and HTLV-2. A recent study demonstrated 
that the PBM domain for Tax-1 is required to interact 
with the cellular protein SNX27 [84]. This interaction 
facilitates the ability of Tax-1 to regulate the localiza-
tion of the receptor molecule GLUT1 on the surface of 
cells altering virus production and infectivity.

Tax-1 and Tax-2 have been shown to drive various 
cellular pathways via activation of MAPKs. Tax has 
been documented to bind MEKK1, TAK1, and GPS2 
which, in turn, play roles in activation of the NF-κB 
and JNK pathways [85, 86].

Lastly, Tax-1 has been shown to repress the activ-
ity of the critical tumor suppressor gene p53 through 
various pathways including the NF-κB and ATF/CREB 
pathways discussed above [87]. Tax-2 has also been 
found to inhibit p53 function [88]. Tax-1 disrupts 
other cell cycle checkpoint and DNA damage repair 
systems; these interactions are thoroughly reviewed 
elsewhere [89]. There is a paucity of comparative 
information concerning the effects of Tax-2 on these 
systems.

HBZ and APH‑2
HTLV-1 and HTLV-2, both encode gene products from 
the antisense strand of the proviral genome, termed 
HBZ and APH-2, respectively. Like Tax-1 and Tax-2, 
HBZ and APH-2 feature multiple similarities and differ-
ences that likely contribute to the pathogenic potential or 
lack thereof. The prominent similarities and differences 
will be discussed in this section and are summarized in 
Fig. 3b.

The presence of the HTLV-1 antisense transcript HBZ 
was clearly demonstrated by Gaudray et al. in 2002 after 
prior identification of a conserved open reading frame 
in the antisense strand of the HTLV-1 genome [90, 91]. 
Years later, APH-2 was described as the antisense tran-
script of HTLV-2 by Halin et  al. [92]. Both HBZ and 
APH-2 mRNAs are transcribed from the 3′ LTR and 
are polyadenylated [92]. HBZ is a nuclear protein with 
three functional domains: N-terminal transactivation 
domain, a central modulatory domain, and a C-terminal 
bZIP domain. APH-2 similarly has a central modulatory 
domain, but lacks an N-terminal transactivation domain 
and has a non-conventional C-terminal bZIP domain 
(HBZ and APH-2 are diagramed in Fig. 2a, b).

HBZ protein represses Tax-mediated proviral tran-
scription through heterodimer formation with CREB, 
CREB-2, CREM, and ATF-1 [90, 93–95]. This heterodi-
mer formation prevents Tax-1-induced binding of these 
transcription factors to Tax Responsive Elements (TREs) 
located in the LTR, blocking sense provirus transcrip-
tion. APH-2 has been shown to perform a similar func-
tion in HTLV-2 through interactions with CREB via its 
non-conventional bZIP domain [92, 96]. Despite their 
similar use of ATF/CREB proteins as means to suppress 
Tax-induced provirus transcription, HBZ possesses far 
greater inhibitory potential when compared to APH-
2. Two potential mechanisms behind this difference in 
repression ability are the significant difference in pro-
tein half-lives (discussed below) and that APH-2 lacks a 
N-terminal transactivation domain. HBZ has been shown 
to interact, through its transactivation domain, with the 
KIX domain of p300/CBP [97, 98]. The binding of HBZ 
to the KIX domain inhibits Tax-1 interaction with the 
KIX domain and subsequent CREB-mediated provirus 
transcription. Another potential mechanism for this dif-
ference was described by Murphy et al. in 2016. HBZ and 
APH-2 were individually found to interact with NFAR; 
HBZ interaction with NFAR resulted in decreased Tax-
mediated transactivation while APH-2 interaction with 
NFAR did not [99].

Deletion of either antisense protein from their respec-
tive HTLV molecular clones has no effect on in  vitro 
immortalization of primary T-lymphocytes. How-
ever, antisense protein deletion does result in divergent 
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phenotypes in vivo using a rabbit model of infection. Loss 
of HBZ lowers the replication and persistence of HTLV-1 
infection while loss of APH-2 increased in vivo HTLV-2 
replication and proviral load in rabbits [96]. Thus, 
APH-2 manifests itself as an inhibitor of viral replication, 
whereas HBZ has evolved additional functions. Both 
HBZ and APH-2 have been shown to inhibit RelA/p65 
activity [100, 101]. HBZ represses IRF-1 transcriptional 
activity while APH2 appears to promote IRF-1 [100]. 
Thus, HTLV-2 may be more susceptible to IRF-1-me-
diated apoptosis [100]. HBZ, but not APH-2, enhances 
TGF-β signaling and APH-2 has a considerably shorter 
half-life than that of HBZ (approximately 20–30  min vs 
2–6 h) [100]. The drastic difference in HBZ and APH-2 
half-life may be the result of differential mechanisms of 
stability maintenance. It has been shown that HBZ stabil-
ity is largely regulated by UBR5, an E3 ubiquitin ligase, 
whereas the stability of APH-2 has been shown to be 
controlled by PML nuclear bodies in a sumoylation-
dependent manner [102].

Several other functions have been attributed to HBZ. 
These include induction of genomic instability through 
double strand breaks [95], enhancement of hTERT 
expression through JunD [95], suppression of apoptotic 
factor Bim [103], activation of the mTOR pathway [104], 
inactivation of tumor suppressor p53 [95], and upregula-
tion of non-canonical Wnt signaling, and suppression of 
canonical Wnt signaling [105]. These, and other altera-
tions to cellular metabolism, likely all contribute to HBZ-
induced HTLV-1 pathobiology, but direct comparisons 
concerning these functions between HBZ and APH-2 
have yet to be explored.

Other genes
HTLV-1 and HTLV-2 express other regulatory and acces-
sory genes including Rex-1/Rex-2, p21Rex/truncated Rex, 
p30/p28, and p12/p10. HTLV-1 also expresses p13 and p8 
while HTLV-2 expresses p11, these three proteins do not 
have a homologue in the opposing virus. This section will 
briefly touch on the remaining gene products of HTLV.

Rex‑1 and Rex‑2
The main function of Rex in the viral lifecycle is to pro-
mote the export of the full length unspliced mRNA from 
the nucleus [106]. This is required to bypass the cellular 
mechanisms that retain intron containing mRNAs in the 
nucleus. Rex promotes viral mRNA export by binding to 
a mRNA stem loop structure known as the Rex respon-
sive element (RxRE) that is present in the LTR region 
of both HTLV-1 and HTLV-2 [107]. Upon Rex bind-
ing to the RxRE, multimerization of the Rex protein will 
occur, which promotes an interaction with CRM-1 [108]. 
Together with CRM-1, Rex then completes the nuclear 

export of viral mRNAs, after which Rex will shuttle back 
to the nucleus.

Rex isoforms
HTLV-1 expresses one isoform of Rex known as p21Rex, 
while HTLV-2 expresses several isoforms known as 
truncated Rex (tRex). HTLV-2 tRex is expressed from 
two different mRNAs and via different initiation codons 
resulting in four distinct isoforms between the sizes of 17 
and 22 kDa [109]. Both p21Rex and tRex lack the N-ter-
minal domains of the Rex proteins required for binding 
to the RxRE, therefore these proteins are not capable of 
interacting with viral mRNAs. It was predicted that both 
p21Rex and tRex could inhibit the function of the full-
length Rex proteins [110]. While this has been confirmed 
for tRex, no evidence exists for this function of p21Rex 
[110].

p30 and p28
p30 and p28, expressed by HTLV-1 and HTLV-2 respec-
tively, each function to retain the spliced Tax/Rex mRNA 
in the nucleus resulting in inhibition of virus produc-
tion [111, 112]. p28 has been shown to be required for 
in vivo viral persistence in the rabbit model of infection 
[113]. Interestingly, p30 is dispensable for viral persis-
tence in the rabbit model of infection while it is required 
for infectivity in macaques [114]. p30 inhibits Tax-1-me-
diated transcription via a competitive binding event with 
CBP/p300, however, p28 does not appear to have this 
capability [115]. HTLV-1 p30 has several other reported 
functions that have not been documented for p28. These 
functions include modulating DNA damage recognition 
and down-regulation of toll-like receptor 4 [116, 117]. 
Few studies have been performed on p28, leaving it as a 
potentially valuable target for information regarding the 
differing pathologies of HTLV-1 and HTLV-2.

p12/p8 and p10
The last gene products with similar sequence and func-
tion between the two viruses are HTLV-1 p12 and 
HTLV-2 p10. p12 is a membrane bound protein that is 
localized to the endoplasmic reticulum (ER) and Golgi. 
p12 appears to play a role in dendritic cell infection, but 
deletion of p12 from the provirus does not alter PBMC 
immortalization in vitro or viral persistence in vivo [114]. 
p12 reduces expression of ICAM-1 and ICAM-2 on the 
surface of infected cells, which prevents NK cell-medi-
ated death [118]. p12 can be proteolytically cleaved into a 
carboxyl terminal product, p8, which localizes at the cell 
membrane due to the removal of the ER retention signal 
[119]. p8 has been shown to mediate HTLV-1 transmis-
sion via activation of the lymphocyte function-associated 
antigen-1, which promotes cell-to-cell contact of T-cells 
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and increases the potential for viral transmission [119]. 
HTLV-2 p10 has been shown to bind to MHC-1 but 
to date no other functions have been identified [120]. 
HTLV-2 also does not express a homologue to HTLV-1 
p8.

p13
HTLV-1 p13 is a mitochondrial-associated protein of 87 
amino acids, which is identical to the carboxyl-terminal 
87 amino acids of p30 [121]. Mutations of p13 in HTLV-1 
virions do not alter viral infectivity in inoculated rabbits 
[122]. p13 expression has been tied to increased reactive 
oxygen species production and apoptosis [123]. HTLV-2 
does not express a homologue to p13.

p11
p11 is a unique protein expressed by HTLV-2. p11 is 
expressed from the same mRNA transcript as p10. p11 
has been shown to bind to MHC-1 potentially modulat-
ing the immune response [120].

Tropism and clonality
The in vivo tropism of HTLV-1 and HTLV-2 differ, with 
HTLV-1 being primarily detected in  CD4+ T-lympho-
cytes, and HTLV-2 in  CD8+ T-lymphocytes [124, 125]. 
Previous studies have further investigated this diver-
gent tropism and both viral and cellular determinants 
have been suggested as potential contributors [126, 127]. 
GLUT1 and NRP1 serve as receptor molecules for both 
HTLV-1 and HTLV-2, while HTLV-1 uses HSPG as an 
additional co-receptor [27].  CD4+ T-cells demonstrate 
high levels of HSPG expression and minimal GLUT1, 
whereas  CD8+ T-cells demonstrate the opposite. A 
recent in  vivo study found that the tropism for  CD4+ 
and  CD8+ T-lymphocytes was equivocal 1-week post-
inoculation of New Zealand White rabbits with HTLV-1 
and HTLV-2 [127]. A similar result was demonstrated 

via in  vitro PBMC immortalization assays early after 
co-culture [127]. In cell culture, the  CD4+:HTLV-1 and 
 CD8+:HTLV-2 tropisms were established several weeks 
after infection [127]. This result clearly suggests a post 
entry event driving the preferential expansion.

Infection with either HTLV-1 or HTLV-2 have been 
shown to result in clonal proliferation of T-cells [128, 
129]. An HTLV-1 infected host has an estimated 28,000 
clones circulating [130]. In ATL, 91% of the dominant 
clones contain a single provirus with integration site 
characteristics that resemble those of low-abundance 
clones found in both ATL cases and asymptomatic indi-
viduals [131]. This suggests that oligoclonal expansion 
does not necessarily result in malignant transformation. 
HTLV-2 infected individuals typically carry a small num-
ber of markedly expanded clones supporting the notion 
that oligoclonality does not necessarily translate to malig-
nant potential [132]. Differences in HTLV-1 and HTLV-2 
tropism, clonality, and pathobiology are summarized in 
Fig. 4.

Conclusion
HTLV-1 and HTLV-2 are highly related viruses with dif-
ferent pathobiology. While being closely related with 
sequence and genomic structure, there exists several dif-
ferences between HTLV-1 and HTLV-2. Several studies 
within the field have suggested these differences may help 
explain the different disease outcome between these two 
viruses. It is worth noting that the smaller populations of 
individuals infected with HTLV-2 may mask a potential 
disease caused by this virus, but in vivo and in vitro work 
by members of the HTLV research community clearly 
demonstrate the lower transforming capacity of HTLV-2. 
The regulatory Tax proteins and antisense-derived proteins 
of the two viruses are the most well compared of HTLV-1 
and HTLV-2.

Fig. 4 Comparison of HTLV‑1 and HTLV‑2 pathobiology
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The few differences that exist between HTLV-1 and 
HTLV-2 require further intense study. The complete 
exploration of what makes HTLV-1 pathogenic compared 
to HTLV-2 would open many avenues to fight this patho-
genic capability and improve the livelihoods of individuals 
infected with HTLV-1. Also, increased understanding of 
how HTLV-1 causes cancer has broad impact on the cancer 
field as a whole, potentially uncovering new therapies for 
other cancer types.
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