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HTLV‑1 contains a high CG dinucleotide 
content and is susceptible to the host antiviral 
protein ZAP
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Abstract 

Background:  Human T cell leukaemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases such as 
adult T-cell leukaemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis. In contrast to another 
human retrovirus, human immunodeficiency virus type 1 (HIV-1), HTLV-1 persists in the host not via vigorous virus 
production but mainly via proliferation and/or long-term survival in the form of silent proviruses in infected host cells. As 
a result, HTLV-1-infected cells rarely produce virus particles in vivo even without anti-retroviral treatment. That should be 
an advantage for the virus to escape from the host immune surveillance by minimizing the expression of viral antigens in 
host cells. However, why HIV-1 and HTLV-1 behave so differently during natural infection is not fully understood.

Results:  We performed cap analysis of gene expression (CAGE) using total RNAs and nascent, chromatin-associated, 
RNAs in the nucleus and found that HTLV-1 RNAs were processed post-transcriptionally in infected cells. RNA pro-
cessing was evident for the sense viral transcripts but not the anti-sense ones. We also found a higher proportion of 
CG di-nucleotides in proviral sequences of HTLV-1-infected cells, when compared to the HIV-1 genomic sequence. 
It has been reported recently that CG dinucleotide content of viral sequence is associated with susceptibility to the 
antiviral ZC3HAV1 (ZAP), suggesting the involvement of this protein in the regulation of HTLV-1 transcripts. To analyse 
the effect of ZAP on HTLV-1 transcripts, we over-expressed it in HTLV-1-infected cells. We found there was a dose-
dependent reduction in virus production with ZAP expression. We further knocked down endogenous ZAP with two 
independent targeting siRNAs and observed a significant increase in virus production in the culture supernatant. 
Other delta-type retroviruses such as simian T-cell leukaemia virus and bovine leukaemia virus, also contain high CG-
dinucleotide contents in their viral genomes, suggesting that ZAP-mediated suppression of viral transcripts might be 
a common feature of delta-type retroviruses, which cause minimal viremia in their natural hosts.

Conclusions:  The post-transcriptional regulatory mechanism involving ZAP might allow HTLV-1 to maintain a deli-
cate balance required for prolonged survival in infected individuals.
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Background
The human T cell leukaemia virus type 1 (HTLV-1) was 
the first retrovirus that was associated with a human dis-
ease [1–3]. Specifically, it causes adult T-cell leukaemia/
lymphoma (ATL) and several inflammatory diseases such as 
HTLV-1-associated myelopathy/tropical spastic paraparesis 
[4–7]. Further, this virus infects approximately 20 million 
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people worldwide, and mainly those living in endemic areas 
including Southwestern Japan, the Caribbean, and sub-Saha-
ran Africa [8]. As a retrovirus, HTLV-1 integrates into the 
genome of infected cells in the form of a provirus. The plus 
and minus strands of this provirus encode several viral pro-
teins, such as Tax and HBZ [9]. Another retrovirus, human 
immunodeficiency virus type I (HIV-1), show vigorous 
viral replication without anti-retroviral drugs, but HTLV-1 
persists in infected individuals without virus in the plasma 
even in the absence of anti-retroviral drugs. It has also been 
reported that some HIV-1-infected clones expand clon-
ally like HTLV-1-infected cells [10, 11]. Most of them carry 
defective proviruses [12], whereas HTLV-1-infected clones 
carrying full-length provirus seems to expand without pro-
ducing viral particles, suggesting latency-prone phenotype of 
HTLV-1-infected cells. Most of HTLV-1-infected cells are 
transcriptionally silenced in vivo, but they quickly increase 
a few hours after culture ex  vivo [13, 14]. In contrast, the 
minus-strand transcript HBZ is present in the majority of 
infected cells, at low levels [15, 16]. This pattern of viral gene 
expression is regulated by a complex mechanism involving 
cellular, viral, and metabolic factors [17, 18]. For example, 
at the post-transcriptional level, the plus-strand-encoded 
Rex viral protein plays an important role in orchestrating 
the nuclear export of viral mRNAs [19]. In addition, it has 
been reported that HBZ mRNA is retained in the nucleus 
[20]. These indicates there would be unidentified regulatory 
mechanisms for proviral transcriptional regulation.

Microbial infections are detected by the host through 
multiple mechanisms. Viruses can be recognized by pat-
tern recognition receptors such as RIG-I, which trigger an 
intracellular signalling cascade activating the expression 
of inflammatory mediators to eliminate infected cells and 
pathogens [21]. In addition to these transmembrane and 
cytoplasmic receptors, viral infections can also be inhib-
ited by the action of cellular restriction factors at different 
stages in their life cycle [22]. Among these restriction fac-
tors, the ZC3HAV1 (ZAP) protein has been reported to 
exert antiviral activity against a broad range of viral fami-
lies including alphaviruses, filoviruses, Hepatitis B virus, 
influenza A virus, and retroviruses such HIV-1 [23]. It still 
remains largely unknown how these antiviral mechanisms 
control persistence of HTLV-1 infection in the host [24]. In 
this study, we sought to determine whether HTLV-1 viral 
transcripts could be detected by ZAP, targeting them for 
degradation or processing.

Results
The cap analysis of gene expression (CAGE) profile 
of an HTLV‑1‑infected cell line suggests the processing 
or degradation of viral RNAs
The expression of HTLV-1 transcripts occurs in bursts or 
intermittently in infected cells [25, 26], indicating that the 

regulation of HTLV-1 transcripts at the transcriptional 
or post-transcriptional levels is more complex than our 
current understanding. To gain insight into the pattern 
of proviral transcript regulation in more detail, we con-
ducted CAGE [27], which detects 5′ capped RNAs and is 
therefore useful to identify 5′ end of RNAs and transcrip-
tion start sites (TSSs), as well as to quantify coding and 
non-coding RNAs with a 5′-cap structure. We analysed 
the TBX-4B cell line, isolated from the peripheral blood 
of an HTLV-1-infected individual, which contains one 
copy of the integrated provirus in chromosome 22; more-
over, this provirus is highly transcribed (Fig.  1a) [28]. 
The level of transcription in the sense direction in these 
cells was much higher than that in the antisense direc-
tion (Additional file 1: Fig. S1). In general, CAGE signals 
tended to accumulate near the TSS, as observed for the 
host genes PNPLA3 and SAMM50 (Fig.  1a). Unexpect-
edly, the CAGE signal was not only detectable in the 
LTRs, which serve as promoters, but was broadly spread 
all along the provirus (Fig.  1a). These data suggested 
two possibilities. First, there might be cryptic proviral 
transcription from the region within the 5′ and 3′ LTRs. 
Second, HTLV-1 RNAs might be post-transcriptionally 
degraded, resulting in a broad CAGE signal when cleaved 
RNAs are re-capped. Previous studies reported that some 
CAGE tags align to not only TSSs or enhancer regions 
but also other genomic regions such as exonic regions, 
indicating that transcribed RNAs are processed and 
recapped and thereby detectable by CAGE [29, 30]. To 
distinguish these two possibilities, we performed a modi-
fied version of CAGE, called native elongating transcript-
CAGE (NET-CAGE), where nascent RNAs that are not 
yet affected by post-transcriptional processing are puri-
fied from chromatin and used as an input for CAGE [31]. 
We compared the ratio of signals in the internal region of 
the provirus between CAGE and NET-CAGE, and found 
that with NET-CAGE this was much lower than that with 
CAGE in the sense direction (Fig.  1b). This tendency 
was not observed in the antisense direction (Fig. 1c). We 
calculated the proportion of CAGE signals in the inter-
nal region of the provirus within the total number align-
ing to the whole provirus and plotted the results for the 
plus and minus strands separately (Fig. 1d). We observed 
a larger number of peaks in CAGE than in NET-CAGE 
for plus-strand-aligning reads (Fig.  1d, top). This dif-
ference was not observed for the minus strand-aligning 
reads (Fig. 1d, bottom). It has been reported that broad 
CAGE signals occur around the TSSs of human genes 
with high levels of transcription [29]. We searched the 
whole human genome for a high-density CAGE signal in 
TBX-4B cells. We performed a sliding window analysis to 
investigate the number of CAGE peaks present in respec-
tive 10-kb windows, which is approximately the size of 
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the provirus. We discovered that the integrated HTLV-1 
provirus was the most significantly enriched region for 
multiple CAGE signals within the human genome, as 

shown by the red circles in Fig.  1e. This tendency was 
not observed with NET-CAGE (Fig. 1f ), suggesting that 
5′-capped RNAs originating from the internal regions 
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Fig. 1  Evidence for RNA processing in an HTLV-1-infected cell line. a One representative cap-associated gene expression (CAGE) profile for TBX-4B 
cells is visualized by integrate genomic viewer (IGV). Each gray line represents each sequencing read we detected in the analysis. The region around 
the integrated provirus is shown as red bar. b Quantification of the CAGE and nascent-elongating-transcript CAGE (NET-CAGE) reads in the sense 
orientation within the proviral region, between the LTRs. c The same is shown for reads in the anti-sense orientation. d CAGE and NET-CAGE profiles 
in the proviral region between the LTRs (top: sense signal; bottom: anti-sense signal). Only the first nucleotide of the 5′ side of the transcripts is 
shown (transcription start site; TSS). The signal was calculated as a percentage of total reads that aligned to the provirus. e Signal in a sliding window 
of 10 kb is shown for CAGE. f NET-CAGE datasets of TBX-4B cells. Red circles correspond to virus-aligned reads, whereas black circles correspond to 
human genome-aligned reads



Page 4 of 11Miyazato et al. Retrovirology           (2019) 16:38 

of the provirus are rare in the nucleus but present in the 
cytoplasm. These findings indicate that the broad CAGE 
signal observed in the internal proviral region (Fig.  1a) 
are generated at the post-transcriptional level.

The proviral sequences of delta retroviruses contain higher 
proportions of CG di‑nucleotides
Several cellular proteins target viral RNA, relying on dif-
ferent mechanisms to detect them and mount an anti-
viral immune response. ZAP is a cellular restriction factor 
that shows antiviral activity against a wide range of RNA 
viruses [23, 32–35]. In addition to a complex secondary 
structure [36, 37], a high content of CG di-nucleotides 
seems to be a key factor for the recognition of targets by 
ZAP [38]. The evolution of RNA viruses of vertebrates, 
such as HIV-1, has been reported to lead to viral genomes 
with a low proportion of CGs to escape from the anti-
viral host mechanism [38, 39]. We analysed the propor-
tions of various dinucleotides in the human genome and 
found that the CG dinucleotide was under-represented 
compared to other dinucleotides, consistent with pre-
vious reports [39, 40] (Fig.  2a). We next performed the 
same analysis for several retroviruses and found that CG 
suppression in HIV-1 and HIV-2 was similar to that of 
the human genome (Fig. 2b), but was not as apparent in 
HTLV-1 and HTLV-2. The same tendency was observed 
for other delta retroviruses and previously-reported 
ZAP-target viruses (Fig. 2c, d). We then analysed the CG 
di-nucleotide content and distribution along the provi-
rus based on three HIV-1 and three HTLV-1 sequences 
(Fig. 2e, f ). A sequence of approximately the same length 
as HIV-1 and HTLV-1, 10 kb and 9 kb, respectively, with 
a random distribution of CG di-nucleotides, was used for 
comparison. On one hand, there was a clear depletion 
of CG dinucleotides in HIV-1 genomes (Fig. 2e). On the 
other hand, the depletion of the CG di-nucleotides was 
not as evident in HTLV-1 sequences compared to that in 
the random control (Fig.  2f ). These data demonstrated 
that HTLV-1 maintains a high CG dinucleotide content 
despite long-term co-existence with humans [41].

HTLV‑1 viral transcripts contain a higher proportion of CG 
di‑nucleotides and could be targeted by ZAP
The HTLV-1 genome encodes several viral RNAs both in 
sense and antisense orientations [42]. We next analysed 
the CG dinucleotide content of HIV-1 and HTLV-1 tran-
scripts together with the those of the host cell. The CG 
dinucleotide content per transcript length for all HTLV-1 
transcripts was higher than the average value for human 
transcripts. In contrast, that of all HIV-1 transcripts 
was lower than the average value for human transcripts 
(Fig. 3a, b). CG di-nucleotides were found to be distrib-
uted broadly in the HTLV-1 transcripts tax and HBZ 

compared to distribution in HIV-1 transcripts such as tat 
and nef (Fig. 3c). Transcripts of simian T-cell leukaemia 
virus type 1 (STLV-1) and bovine leukaemia virus (BLV) 
also showed a higher CG content compared to those of 
their hosts (Fig. 3d, e, respectively).

ZAP exerts an inhibitory effect on the production of HTLV‑1
Next, we made a hypothesis that HTLV-1 transcripts are 
targeted by ZAP because of their high GC content. To 
test this, we analysed the effect of ZAP expression on the 
HTLV-1 transcript tax. We transfected HeLa cells with 
Tax and ZAP expression vectors and found that ZAP 
expression decreased Tax RNA level in a dose-dependent 
manner (Fig. 4a). The effect was modest but statistically 
significant. These data demonstrated that HTLV-1 viral 
transcripts contain a high proportion of CG di-nucleo-
tides, and could be targeted by ZAP. To evaluate the role 
of ZAP in HTLV-1 production, we over-expressed ZAP 
using a ZAP-expression vector to transfect JEX22 cells, 
a cell line latently infected with HTLV-1. This cell line 
expresses viral transcripts upon stimulation with PMA/
ionomycin. The over-expression of ZAP decreased the 
production of HTLV-1 p19 protein in the culture super-
natant in a dose-dependent manner (Fig. 4b). To investi-
gate the role of ZAP under physiological conditions, we 
next knocked down endogenous expression using siRNAs 
in JEX22 cells. ZAP knock-down using two different siR-
NAs significantly reduced the level of some sensei viral 
RNAs, such as tax, gag, and pol region (Fig. 4c), as well 
as virus production in the culture supernatant (Fig. 4d). 
The better ZAP suppression by ZAP2 siRNA resulted in 
the enhanced production of p19 compared to that with 
ZAP1 siRNA. These results indicate that ZAP expres-
sion negatively regulates virus production in HTLV-
1-infected cells. We also performed ZAP over-expression 
and knock-down experiments using the HIV-1-infected 
cell line J1.1. There were no significant changes in p24 
expression with either ZAP over-expression or knock-
down (Fig.  4e, f, respectively). These data demonstrate 
that HTLV-1 is susceptible to the host cellular defence 
mechanism mediated by ZAP, possibly due to the high 
CG content of the viral genome sequence.

Discussion
During HTLV-1 natural infection, there is no detect-
able viremia in the peripheral blood of infected individu-
als, even in the absence of anti-retroviral drugs. This is 
in sharp contrast to that with another human retrovirus, 
HIV-1, in which viral latency is rare in the absence of 
anti-retroviral drugs. It seems that HIV-1 and HTLV-1 
evolved quite differently in terms of strategies to achieve 
persistent infection in the host. Both HIV-1 and HTLV-1 
target CD4+ T cells. However, HIV-1 induces apoptosis 
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in infected cells through vigorous virus production, 
which suppresses the anti-viral immune response and 
enables the virus to achieve persistent infection in the 
host. In contrast, HTLV-1 rarely produces viral parti-
cles, but rather promotes the proliferation and survival 

of infected cells to maintain a viral reservoir in the host. 
These different viral strategies to achieve persistent 
infection are associated with viral pathogenesis. HIV-1 
induces acquired immunodeficiency syndrome by deplet-
ing infected CD4+ T cells, whereas HTLV-1 leads to the 
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amounts of a human ZAP expression vector and cultured for 24 h. Stimulation with TNFα was performed for 4 h before collecting the supernatant 
and the cells for analysis. f J1.1 cells were transfected with the indicated siRNAs and cultured for 24 h. They were then stimulated as indicated before 
analysis. No significant changes were observed in p24 protein levels in the supernatant (top panel) upon knock-down of endogenous ZAP (bottom 
panel). *p < 0.05; **p ≤ 0.001; ***p < 0.0001
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development of leukaemia in HTLV-1-infected cells in 
some infected individuals after a long latency, as a con-
sequence of the enhanced proliferation and/or survival 
of infected CD4+ T cells. Several reasons have been pro-
posed as to explain the enhanced latency of HTLV-1, 
such as different activity of the viral LTR promoters and 
the presence of antisense transcripts in HTLV-1 [42–44].

In this study, we identified another mechanism that 
could explain why HTLV-1 is prone to latency in  vivo. 
The anti-viral systems of the host cell are negative regula-
tors of viruses. However, HTLV-1 seems to take advan-
tage of its high susceptibility to the host antiviral system, 
specifically ZAP-mediated viral RNA processing, to mini-
mize viral antigen expression and thereby maintain latent 
infection. ZAP-mediated RNA processing is also a type of 
restriction factor for these viruses. Based on our findings 
including an abnormal CAGE pattern (Fig.  1) and high 
CG-dinucleotide content in the HTLV-1 genome (Fig. 2), 
we suggest that ZAP might regulate HTLV-1 transcripts 
at the post-transcriptional level. CAGE is a type of RNA-
seq that facilitates the identification of the 5′ end of an 
RNA molecule by capturing its 5′ cap structure. In princi-
ple, we can detect both coding and non-coding 5′-capped 
RNA. Our CAGE and NET-CAGE results indicated that 
the broad CAGE signals in the internal proviral region 
result from RNAs present in the cytoplasm but not in the 
nucleus. This suggests the possibility that HTLV-1 RNA 
is processed at least partially mediated by ZAP, can be 
re-capped in the cytoplasm and thereby detected only by 
CAGE.

It has been reported that CAGE signals can cross 
exon–exon junctions, and therefore, these must have 
arisen from at least partially processed mRNAs [29]. 
Our data also indicate that HTLV-1 transcripts are pro-
cessed at least partially by ZAP and can be recapped by 
an unknown mechanism and thereby detected by CAGE.

It has been reported recently that HTLV-1 transcrip-
tion in the sense orientation is only intermittently active 
in an ATL cell line and primary infected T-cell clones 
[25, 26]. Further, there is a strong burst of proviral sense 
transcription but the expression is transient and is ter-
minated spontaneously. Glucose metabolism and oxy-
gen availability play a role in the reactivation of proviral 
expression from latency [45]; however, how such HTLV-1 
transcriptional bursts terminate remains elusive. Since 
ZAP expression is induced by viral infection via an IRF-
3-dependent pathway [46], the HTLV-1 burst might trig-
ger ZAP expression. Then induced ZAP might target 
HTLV-1 transcripts as a negative feedback mechanism. It 
has been reported that promoter-associated small RNAs 
generated from the TSS of the c-Myc gene suppress c-
Myc messenger RNA abundance [29]. Thus, processed 
viral RNA might not be just a consequence of RNA 

degradation but also could have a regulatory function to 
control HTLV-1 production at the post-transcriptional 
and translational level.

The abundance of antisense transcript CAGE signals 
was not significantly different between conventional 
CAGE and NET-CAGE (Fig.  1c), although both sense 
and antisense transcripts were found to contain a high 
CG-dinucleotide content. The CG-dinucleotide content 
not only determines ZAP susceptibility, but other factors 
such as the secondary structure of RNA are also involved 
[36, 37]. The abundance of transcripts might also play a 
role in susceptibility to ZAP; therefore, the low level of 
antisense transcripts in TBX-4B cells makes them less 
sensitive to ZAP. It has been reported that antisense pro-
viral transcription is constitutively active, whereas sense 
transcription is frequently suppressed or expressed only 
intermittently. Previous studies also reported that tran-
scription is regulated by genetic and epigenetic mecha-
nisms [47–50]; however, the findings of the current study 
indicate that there is another regulatory mechanism con-
trolling proviral transcription at the post-transcriptional 
level.

Conclusion
HTLV-1 has evolved to maintain latency via multiple 
mechanisms. We show in this study that post-transcrip-
tional RNA processing via antiviral ZAP is an additional 
strategy through which HTLV-1 achieves persistent 
infection in the host.

Methods
Cell lines
TBX-4B [28], an HTLV-1-infected clone derived from 
PBMCs of a HAM/TSP patient, was kindly provided by 
Dr. Charles Bangham (Imperial College London). These 
cells were cultured in RPMI supplemented with 20% FBS 
(SIGMA), 200 U/ml human recombinant IL-2 (Wako), 
100  U/ml penicillin (Nacalai Tesque), and 100  μg/ml 
streptomycin (Nacalai Tesque). TBX-4B contains one 
copy of the integrated provirus in chromosome 22. JEX22 
cells are latently infected with HTLV-1, and were kindly 
provided by Dr. Jun-ichi Fujisawa (Kansai Medical Uni-
versity). These cells contain two copies of integrated 
proviruses, in chromosomes 4 and 16. HeLa, a human 
adenocarcinoma cell line, was also used for transfection 
experiments. J1.1cells were obtained through the AIDS 
Research and Reference Reagent Program, Division of 
AIDS, NIAID, NIH from Dr. Thomas Folks [51]. These 
cells were handled in a bio-containment level 3 room. 
Except for TBX-4B cells, which were cultured as detailed, 
all other cells were cultured in RPMI supplemented with 
10% FBS, 100  U/ml penicillin (Nacalai Tesque), and 
100 μg/ml streptomycin (Nacalai Tesque).
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Proviral DNA sequence analysis
The proviral sequences of several retroviruses were 
obtained from PubMed. Accession numbers are pro-
vided in Additional file  1: Table  S1. The number CG 
di-nucleotides was counted using Geneious (Biomat-
ters Ltd.) software, which was also used to generate the 
schematic representation of their distribution within 
the proviral sequences. The number of CG di-nucleo-
tides for each virus was plotted in graphs generated 
with GraphPad software. For comparison, a 9040 nucle-
otide-long random sequence was generated with the 
following website: http://www.facul​ty.ucr.edu/~mmadu​
ro/rando​m.html (https​://www.bioin​forma​tics.org/
sms2/rando​m_dna.html). The rho statistic (ρ) was com-
puted for each dinucleotide pair using the R library 
seqinr. In brief, ρ measures how over- or under-repre-
sented a particular DNA nucleotide is and for a DNA 
dinucleotide, ρ is defined as:

where f is the frequency of the nucleotide x/y/xy. ρ is 
expected to be equal to 1 when dinucleotide (xy) is 
formed by chance. If ρ is more than 1, the dinucleotide is 
much more common than expected, i.e. over-represented 
and vice versa.

Bioinformatic analysis of human and viral transcripts
The correlation between CG di-nucleotide content and 
the length of the transcript was calculated and plotted 
in graphs for human, HIV-1, and HTLV-1 genes using 
the ggplot2 package in R. Datasets are provided in 
Additional file 1: Table S2.

CAGE and NET‑CAGE
Total and nascent RNAs were harvested from TBX-
4B cells as previously described [31]. CAGE libraries 
were generated using CAGE library preparation kit (KK 
DNAFORM) following the manufacturer’s instructions. 
Briefly, first strand cDNA was synthesized from 5 μg of 
total RNA using random primers. The cap at the 5′end 
of the RNAs was biotinylated to facilitate the subse-
quent cap-trapping step. Remaining RNA fragments 
were digested with RNaseONE enzyme. Approximately 
10  ng of each cDNA was used for linker ligation and 
library preparation. CAGE libraries were quantified by 
qPCR and size distribution was evaluated by TapeSta-
tion (Agilent Technologies) before sequencing in a 
NextSeq device (Illumina) as described previously [52]. 
NET-CAGE was performed as described previously 

ρ
(

xy
)

=

f
(

xy
)

f (x)× f
(

y
)

[31]. We added the step to separate nuclear RNA and 
cytoplasmic RNA before we performed CAGE protocol.

Data analysis for CAGE and NET‑CAGE
Fastq files obtained from the sequencers were quality-
checked and adaptor sequences were trimmed. Align-
ment to the human genome (hg19) and the HTLV-1 
genome (Genbank, AB513134.1) was performed using 
the BWA-MEM algorithm with default parameters [53, 
54]. TSSs were counted after obtaining the position of the 
first nucleotide of each read from the sequencing data.

Knock‑down and over‑expression of ZAP
The knock-down of endogenous ZAP expression in 
JEX22 cells was carried out using two different siRNAs 
targeting the following sequences: GGU​AAA​ACC​UGG​
ACG​GAC​U (siZAP1) and GUG​UAA​GGG​UUG​UCC​
GCU​U (siZAP2) [34]. siRNAs were transfected by elec-
troporation into 2 × 106 cells (NepaGene). After over-
night culture, cells were stimulated for 4  h with PMA 
(50 ng/ml) and ionomycin (1 μM). The culture superna-
tant was collected to determine p19 presence by ELISA 
(RETROtek) in accordance with the manufacturer’s 
instructions and RNA was extracted using a RNeasy 
(Qiagen). To analyze the efficiency of knock-down of 
ZAP, 500–1000 ng of total RNA was used to synthesize 
cDNA, and ZAP expression was determined by RT-
qPCR. HTLV-1 transcripts were also quantified by RT-
qPCR. Results were calculated using the delta–delta CT 
method, normalising to 18SrRNA expression and com-
paring to ZAP expression in cells transfected with con-
trol siRNA (GAPDH). The sequences of the primers used 
are listed in Additional file 1: Table S3.

The same procedure was followed for ZAP knock-
down in J1.1 cells, an HIV-1-infected cell line. For this, 
stimulation was performed with TNFα (10  ng/ml), and 
virus production was determined based on the presence 
of p24 antigen in the culture supernatant by ELISA (RET-
ROtek) following the manufacturer’s instructions.

For ZAP over-expression experiments, JEX22 or J1.1 
cells were electroporated with increasing amounts of a 
ZAP expression vector (Addgene number 45907). The 
following day, cells were stimulated with PMA/ionomy-
cin or TNFα for 4 h. Culture supernatants were collected 
to measure the presence of viral antigens by ELISA, as 
described previously herein. RNA was extracted from the 
transfected cells to confirm the effective over-expression 
of ZAP.

Over‑expression of Tax and ZAP
HeLa cells (1.5 × 106 cells/2 ml) were seeded in a 6-well 
plate, and the following day they were transfected with 

http://www.faculty.ucr.edu/%7emmaduro/random.html
http://www.faculty.ucr.edu/%7emmaduro/random.html
https://www.bioinformatics.org/sms2/random_dna.html
https://www.bioinformatics.org/sms2/random_dna.html
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a Tax expression vector, pCG-Tax [55], in the pres-
ence of increasing amounts of a ZAP expression vec-
tor. Twenty-four hours later, RNA was extracted, and 
Tax transcripts were semi-quantified by RT-qPCR, in 
addition to ZAP, based the delta–delta CT method as 
reported previously [49].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1297​7-019-0500-3.

Additional file 1: Fig. S1. CAGE result of TBX-4B cells.

Additional file 2: Table S1. Genome accession numbers. Table S2. 
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in this study. Table S4. HIV-1 sequences we analyzed in this study.
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