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Abstract 

Background: Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and 
psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by 
means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of 
immune system. We recently demonstrated that autistic children and their mothers share high expression levels of 
some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother–child 
association in Autism Spectrum Disorder (ASD).

Results: In the present study, PBMCs from autistic children and their parents were exposed to stimulating fac‑
tors (Interleukin‑2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and 
cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, 
while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro expo‑
sure to interleukin‑2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines 
while Efavirenz inhibits them.

Conclusion: Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro 
microenvironmental changes in expressing HERVs and pro‑inflammatory cytokines. Remarkably, the antiretroviral 
drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing 
the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspec‑
tives to study the role of HERVs in the biological mechanisms underlying Autism.
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Introduction
Autism Spectrum Disorder (ASD) is a complex and het-
erogeneous neurodevelopmental condition affecting 
more than 1% of children [1]. ASD diagnosis is based on 
clinical observations and neuropsychological assessment 
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of the early-onset dysfunctions in social-communica-
tive reciprocity and restricted and repetitive patterns 
of behaviour, interests, or activities [2]. ASD is believed 
to have a multifactorial and complex aetiology, mainly 
attributed to the combination of genetic vulnerability and 
environmental factors [3]. Numerous ASD-risk genes, 
chromosomal abnormalities, polymorphisms, copy num-
ber variation and de novo mutations have been identified 
in the ASD pathogenesis [4, 5], nevertheless, genetics 
alone cannot explain the heterogeneity of clinical pheno-
types and the concordance rate described in mono- and 
di-zygotic twin pairs [6, 7].

The involvement of the gut-brain axis in the etiology 
of autism has also been proposed. Studies on maternal 
immune activation and interventions on gut microbiota 
dysbiosis in animal model, seem to support this hypoth-
esis. Lipopolysaccharide-mediated maternal immune 
activation induces an abnormal brain-gut-microbiota 
axis with social behavior deficits, anxiety-like and repeti-
tive behavior, hypomyelination, and an ASD-like micro-
biota profile in offspring [8]. Moreover, fecal transplant 
from healthy donor animals, modulates the gut micro-
biota components and rescues social impairment in a 
rat model of autism, suggesting this approach as possible 
intervention in a preclinical setting [9].

Over the recent years, the research efforts focused on 
the understanding of the biological mechanisms that 
guide the pathophysiology of ASD and it is now estab-
lished that environmental factors (e.g. toxicants, mater-
nal intake of medication and maternal infections) can 
act mostly between conception and birth, in specific 
well-delineated sensitive time-windows of increased 
vulnerability of the nervous system [10]. Indeed, dur-
ing pregnancy, the maternal immune response induced 
by several environmental insults could affect different 
stages of neurodevelopment in the foetus, contributing to 
the appearance of altered phenotypes early in childhood 
as well as adult or aged progeny, highlighting the close 
interconnection between the immune and the nervous 
system [11].

In this complex scenario, Human Endogenous Ret-
roviruses (HERVs) have been proposed as contributing 
factors involved in autism, spanning the bridge between 
genetic susceptibility, environmental risk factors and 
immune response [12].

HERVs are genetic elements, derived from their exog-
enous retroviral counterpart by a process of germline 
infection and proliferation within the human genome 
[13–15], and their integration as proviruses led to the 
fixation and the vertical transmission, following Men-
delian laws [16]. HERVs currently make up ~ 8% of the 
genetic material [17, 18], resulting from the prolifera-
tion of a few initial germline invasions by exogenous 

retroviruses [19, 20]. As a consequence, extensive inter-
individual variability due to new insertions, copy num-
ber variations, unfixed copies, and polymorphisms has 
been demonstrated [21–23]. During co-evolution with 
humans, the majority of HERV sequences were silenced 
by negative selective pressure and/or mutations [18], 
and, conversely, some of them have been coopted 
for physiological functions [24]. Their activation in 
response to external stimuli has been also associated 
with human pathological conditions. Indeed, growing 
evidences highlight the involvement of HERV-derived 
transcripts in complex diseases including various 
cancer types, autoimmune, neurological and psychi-
atric disorders such as schizophrenia, attention defi-
cit/ hyperactivity disorder (ADHD) and also ASD [12, 
25–28].

In previous works, we highlighted the presence of a dis-
tinct expression profile of some HERV families (HERV-
H, HERV-K, and HERV-W) in fresh PBMCs from ASD 
and ADHD children [30]. Particularly, high levels of 
HERV-H were found both in ASD and ADHD children 
compared to typical developing individuals and closely 
related with more severe clinical phenotype, being more 
expressed in children with severe motor and communi-
cation impairment [29, 30]. Moreover, in a recent study 
including ASD children and their parents, we demon-
strate that autistic children and their mothers share high 
expression levels of HERV-H and HEMO [an envelope 
gene, named human endogenous MER34 (medium-reit-
eration-frequency-family-34) ORF] [31] and cytokines as 
tumor necrosis factor alpha (TNF-α), interferon gamma 
(IFN-γ) and IL-10, suggesting a close mother–child asso-
ciation in ASD [32].

This observation is corroborated by the results 
obtained in two preclinical models (inbred BTBR T + tf/J 
and valproate-treated CD1 mice) in which high expres-
sion levels of ERVs and proinflammatory cytokines and 
Toll-Like Receptors were associated with ASD-like phe-
notype [33]. Interestingly, in the valproate-treated mice, 
the increased expression of ERVs and behavioural altera-
tions were inherited across generations via maternal line-
age [34], further confirming a pivotal role of the maternal 
molecular profile in the acquisition of autistic phenotype.

Based on our previous findings, in the present study, 
peripheral blood mononuclear cells from autistic chil-
dren and their parents were cultured in the presence of 
the T cell-stimulating factor Interleukine-2 and the mito-
gen phytohemagglutinin or drugs such as the histone 
deacetylase inhibitor valproic acid and the non-nucleo-
side reverse transcriptase inhibitor efavirenz (EFV), with 
the intent to investigate whether the expression level of 
HERVs and cytokines could be modulated by exposure to 
different stimuli or drugs.
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Results
The stimulation in culture with interleukin-2 and phy-
tohaemagglutinin modulated the expression of HERVs 
and cytokines in PBMCs from autistic children and their 
mothers.

The expression of HERV-H, HERV-K, HERV-W and 
pHERV-W env gene, HEMO and a selected group of 
cytokines (IL-1β, IL-6 IL-8, IL-10, TNF-α, and IFN-γ) 
was evaluated in PBMCs from ASD children and their 
parents and from corresponding control individuals (CI), 
by quantitative RT-Real time PCR analysis. All samples 
were analyzed at the sampling time (baseline,  T0) and 
after 72 h in culture without any stimulation (NS) or in 
presence of Interleukin-2 (IL-2) and phytohaemaggluti-
nin (PHA) (ST). The results are represented as box plots 
in Fig. 1 and statically significant comparisons are listed 
in Table 1. Taking into account the interindividual varia-
tions already present at baseline in all groups of individu-
als analyzed, we chose to consider only gene expression 
variations for  2−∆∆Ct > 10 [29] (see Additional file  1: 
Tables S1 for median values and interquartile range, 
IQR).

In PBMCs from ASD children stimulation in culture 
with IL-2 and PHA significantly increased the expression 
of several HERVs (panel A) and cytokines (panel B) com-
pared with both the not stimulated condition (HERV-K, 
HEMO, IL-1β, IL-6, TNF-α, IFN-γ) and the baseline  (T0) 
(HERV-H, HERV-K, HEMO, IL-1β, IL-6, TNF-α, IFN-γ).

In ASD mothers the stimulation significantly increased 
only pHERV-W and all the cytokines analyzed in com-
parison to NS and  T0 condition (IL-1β, IL-6, IL-8, IL-10, 
TNF-α, INF-γ).

In PBMCs from ASD fathers kept in culture, sig-
nificantly higher levels of HERV-W respect to  T0 were 
always observed regardless of the presence of IL-2 and 
PHA in the culture medium.

Concerning control individuals, the stimulation with 
IL-2 and PHA significantly increased the expression of 
HERV-W in PBMCs from children, respect to both the 
NS and  T0 conditions. All other gene expression changes 
observed in control individuals, although statistically sig-
nificant, did not reach values of  2−∆∆Ct > 10.

Finally, at the baseline, HERVs and cytokines expres-
sion levels observed in ASD children and their parents 
were in line with what we already described [32]. Spe-
cifically, ASD children and their mothers showed sig-
nificantly higher expression levels of HERV-H, HERV-K 
and HEMO respect to controls, while in ASD fathers 
only HERV-W was significantly higher respect to corre-
sponding control groups. Of note, here we describe for 
the first time that the expression levels at  T0 of pHERV-
W were significantly higher in ASD children and lower 
in their mothers, respect to matched controls. Regarding 

the expression of the cytokines in PBMCs from ASD 
children and their mothers IL-6, IL-8, IL-10, TNF-α and 
INF-γ was significantly higher compared to correspond-
ing controls.

Moreover, in order to compare stimulation response 
across groups (ASD and CI) while taking confounds into 
account, for each stimulus we employed linear mixed 
models, considering each biomarker as the dependent 
variable and including timepoint, as repeated within-
subject factor (baseline vs 72  h), a between-subject fac-
tor (diagnostic group), and a timepoint*diagnostic group 
interaction term. In children, for the stimulus Il2/PHA 
we found a statistically significant timepoint*diagnostic 
group interaction effect on the induction of HERV-K 
(p < 0.001), HEMO (p < 0.001), HERV-W (p = 0.001), IL-1 
→ (p < 0.001), IL-6 (p < 0.011), TNF-α (p < 0.001) and 
INF-γ (p = 0.017), as well as in mothers on the induction 
of pHERV-W (p < 0.001) and all cytokines considered (IL-
1β p < 0.001; IL-6 p < 0.001; IL-8 p = 0.001; IL-10 p < 0.001; 
TNF-α p = 0.007; INF-γ p < 0.001), with the largest effect 
in ASD group as compared to the control group. In 
PBMCs kept in culture without any stimulation, no evi-
dence of interaction effect in children and their mothers 
and fathers have been found.

The in vitro treatment with valproic acid induced HERV and 
cytokines expression in PBMCs from ASD children and their 
mothers
PBMCs from ASD children and their parents and cor-
responding controls were exposed in  vitro to valproic 
acid (VPA) treatment at the final concentration of 1 and 
2.5 µM, and the expression of HERVs and cytokines was 
evaluated (Fig. 2, Table 2). Median values and IQR of the 
experimental conditions are reported in Additional file 1: 
Table S1.

In PBMCs from autistic children, the exposure to VPA 
(at both concentrations) significantly induced the expres-
sion of HERV-H, HERV-W and pHERV-W (panel A). 
Concerning cytokines expression, VPA modulated the 
expression of IL-8 and TNF-α at the higher concentration 
(panel B) compared to the untreated condition (Table 2).

In PBMCs from ASD mothers, VPA treatment also 
modulated HERV and cytokines expression. Specifically, 
VPA significantly increased HERV-K (at both concentra-
tions), and pHERV-W (VPA 2.5 µM), and reduced HERV-
H expression at both concentrations. VPA treatment also 
induced IL-1β, IL-6 and TNF-α at the concentration 
2.5 µM, while IL-10 was induced at both concentrations, 
in comparison to untreated PBMCs.

In father groups (CI and ASD), VPA treatment at 
both concentrations significantly induced the expres-
sion of HERV-W only. All other gene expression changes 
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Fig. 1 HERVs and cytokines expression in PBMCs from ASD children, their parents and control individuals in different culture conditions. HERV 
transcriptional activity (A) and cytokines expression levels (B) were evaluated at baseline  (T0), after culture without any stimulation (NS) and in 
presence of IL‑2 and PHA (ST) by RT‑Real time PCR. The results are represented as box plots, depicting mild (black dot) and extreme outliers (asterisk) 
for each group. Green bordered white boxes = control individuals; Green bordered grey boxes = ASD children and their parents
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observed in control individuals, although statistically sig-
nificant, did not reach values of  2−∆∆Ct > 10.

Moreover, as for the stimulus IL2/PHA, the lin-
ear mixed models employed for VPA at both con-
centrations analysed led to a statistically significant 
stimulus*diagnostic group interaction effect in chil-
dren on the induction of HERV-H (p ≤ 0.004), HERV-K 

(p ≤ 0.031), pHERV-W (p < 0.001), IL-1 → (p ≤ 0.001), 
IL-6 (p < 0.001), TNF-α (p ≤ 0.017) and INF-γ 
(p ≤ 0.050) and in mother on the induction of HERV-
K (p ≤ 0.030), pHERV-W (p < 0.001), IL-1 → (p < 0.001), 
IL-6 (p < 0.001), IL-8 (p ≤ 0.011) IL-10 (p < 0.001), 
TNF-α (p ≤ 0.026) and INF-γ (p ≤ 0.022), with the larg-
est effect in ASD group as compared to the control 

Fig. 1 continued
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group, while no statically significant results were found 
in fathers.

The in vitro treatment with Efavirenz reduces HERV 
and cytokines expression in PBMCs from ASD children 
and their mothers
PBMCs from ASD children and their parents and corre-
sponding controls were also exposed in vitro to Efavirenz 
(EFV) treatment at the final concentration of 1 and 
2.5 µM, and the expression of HERVs and cytokines was 
evaluated (Fig. 3, Table 3). Median values and IQR of the 
experimental conditions are reported in Additional file 1: 
Table S1. 

In PBMCs from autistic children, the treatment with 
EFV significantly reduced the transcriptional activity 
of HERV-H and HERV-K and conversely significantly 
induced the expression of HERV-W, regardless of the 
concentration used. Moreover, treatment with EFV at 
higher concentration slightly reduced HEMO expression 
(panel A). In parallel to HERV modulation, EFV treat-
ment also significantly inhibited the expression of IL-6 
and TNF-α at the higher concentration (panel B) com-
pared to the untreated condition.

In PBMCs from ASD mothers, EFV exposure signifi-
cantly reduced HERV-H, HERV-K, HERV-W (at both 
concentrations) while pHERV-W only at the higher con-
centration. Concerning cytokines expression, all were 
significantly reduced at the higher EFV concentration, 

and TNF-α and INF-γ also at the lower concentration, 
respect to the untreated condition.

In PBMCs from ASD fathers, the exposure at both 
concentrations of EFV significantly reduced only HERV-
K transcriptional activity, although with values of 
 2−∆∆Ct < 10.

Among control individuals, exposure to EFV inhibited 
HERV expression, although variation detected showed 
values of  2−∆∆Ct < 10. Specifically, EFV significantly 
reduced the expression of HERV-K in PBMCs from all 
control individuals, HEMO in PBMCs from mothers, 
while significantly inducing HERV-W only in fathers.

Furthermore, comparing stimulation response across 
ASD and CI groups, we found a statistically significant 
stimulus*diagnostic group interaction effect in chil-
dren on the reduction of HERV-H (p ≤ 0.004), HERV-K 
(p ≤ 0.014), IL-6 (p ≤ 0.011) and TNF-α (p ≤ 0.009), and 
in mothers on the reduction of HERV-H (p = 0.003), 
HERV-W (p = 0.001), pHERV-W (p < 0.001), IL-1β 
(p = 0.002), IL-6 (p = 0.001), IL-8 (p = 0.021) and IL-10 
(p < 0.001) at the highest concentration analysed, 
while, only at the lowest concentration of HERV-W 
(p < 0.001), pHERV-W (p = 0.002) and IL-1β (p = 0.010). 
As observed for IL2/PHA and VPA, no statically signifi-
cant results were found in fathers for EFV treatment.

In children at 72  h, we found a statistically signifi-
cant stimulus*diagnostic group interaction effect on 
HERV-H (p ≤ 0.004), HERV-K (p ≤ 0.031), IL-1 → 

Table 1 Non‑parametric Friedman test on HERV and cytokines expression in PBMCs stimulated in vitro with IL‑2/PHA

HERVs human endogenous retroviruses, PBMCs peripheral blood mononuclear cells, IL-: Interleukin, TNF tumor necrosis factor, INF interferon, CI control individuals, 
ASD autism spectrum disorder, T0: basaline, NS not stimulated, ST stimulated, VPA Valproic acid, EFV efavirenz

HERV-H HERV-K HEMO HERV-W pHERV-W IL-1β IL-6 IL-8 IL-10 TNF-α INF-γ

Children T0 vs NS 0.001 – – – 0.001 0.001 0.005 – – 0.011 –

CI T0 vs ST – – – 0.004 – < 0.001 – – – < 0.001 –

NS vs ST – – – 0.001 – – – – – – –

Children T0 vs NS – – – – – – – – – – –

ASD T0 vs ST 0.002 < 0.001 0.002 – – < 0.001 < 0.001 – – < 0.001 < 0.001

NS vs ST – < 0.001 0.003 – – < 0.001 < 0.001 – – 0.001 0.002

Mothers T0 vs NS – 0.003 0.004 – – – – – – – –

CI T0 vs ST – – 0.006 – – – – – – – –

NS vs ST – – – – – – – – ‑ – –

Mothers T0 vs NS – 0.012 – – – – – – – 0.003 –

ASD T0 vs ST – – – – < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NS vs ST – – – – < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001

Fathers T0 vs NS – – – – – – – – – ‑ –

CI T0 vs ST – – – – – – – – – ‑ –

NS vs ST – – – – – – – – – ‑ –

Fathers T0 vs NS – – – < 0.001 – – – – – ‑ –

ASD T0 vs ST – – – 0.006 – – – – – ‑ –

NS vs ST 0.020 – – – 0.008 – – – – ‑ –
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Fig. 2 HERVs and cytokines expression in PBMCs from ASD children, their parents and control individuals treated with VPA. HERV transcriptional 
activity (A) and cytokines expression levels (B) were analysed in PBMCs treated with Valproic acid (VPA) at a final concentration of 2.5 µM (2.5) and 
1 µM (1)) by RT‑Real time PCR. The results are represented as box plots, depicting mild (black dot), and extreme outliers (asterisk) for each group. 
Blue bordered white boxes = control individuals; Blue bordered grey boxes = ASD children and their parents
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(p ≤ 0.001), IL-6 (p ≤ 0.011), TNF-α (p ≤ 0.017) and 
INF-© (p ≤ 0.050) where the largest interaction effect 
was observed in IL-2/PHA and VPA.

In mothers at 72  h, we found a statistically signifi-
cant stimulus*diagnostic group interaction effect on 

HERV-H (p ≤ 0.049), pHERV-W (p ≤ 0.002), IL-1 → 
(p ≤ 0.010), IL-6 (p ≤ 0.001), IL-8 (p ≤ 0.021), IL-10 
(p ≤ 0.0001) and INF-© (p ≤ 0.018) where the largest 
interaction effect was observed in VPA and EFV treat-
ment at the higher concentration analyzed.

Fig. 2 continued
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In fathers no statically significant stimulus*diagnostic 
group interaction effects were observed.

For the not stimulated condition we didn’t found stati-
cally significant stimulus*diagnostic interaction effect on 
HERVs and cytokines expression in the groups analyzed.

Discussion
Over the last two decades, scientific research has been 
focused on the early identification of ASD through 
signs already evident in the first months of life, suggest-
ing that ASD pathogenesis begins early during develop-
ment [10, 11]. Furthermore, evidence from preclinical 
studies suggests that the earlier intervention may yield 
more improved developmental outcomes [35]. Although 
a strong genetic component is required, it is now estab-
lished that several environmental factors increase the 

risk of autism by acting during pregnancy as additional 
determinants in genetically susceptible individuals [10]. 
Such insults could in fact activate the maternal immune 
response, resulting in an unfavourable developmen-
tal environment for the unborn child [11]. Thus, autism 
could result from the interaction between genetic vulner-
ability, environmental risk factors, and maternal immune 
response.

Previously, we demonstrated that both ASD children 
and their mothers share a molecular trait characterized 
by high transcriptional activity of HERV-H and HEMO, 
concomitant with the high expression of TNF-α, IFN-γ 
and IL-10 in fresh PBMCs, suggesting a possible mother–
child association in ASD. Hence, we propose HERVs as 
contributing factors to the etiopathogenesis of autism, 

Table 2 Non‑parametric Friedman test on HERV and cytokines expression in PBMCs exposed in vitro to VPA

HERVs human endogenous retroviruses, PBMCs peripheral blood mononuclear cells, IL- Interleukin, TNF tumor necrosis factor, INF, interferon, CI control individuals, 
ASD, autism spectrum disorder, T0 basaline, NS not stimulated, ST stimulated, VPA Valproic acid, EFV, efavirenz

HERV-H HERV-K HEMO HERV-W pHERV-W IL-1β IL-6 IL-8 IL-10 TNF-α INF-γ

Children ST vs VPA 1 μM ‑ 0.001 0.016 0.031 ‑ ‑ ‑ ‑ ‑ ‑ 0.011

CI ST vs VPA 
2.5 μM

‑ < 0.001 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 0.024

VPA 1 μM vs 
VPA 2.5 μM

‑ ‑ 0.020 0.011 ‑ ‑ ‑ ‑ ‑ ‑ ‑

Children ST vs VPA 1 μM 0.036 ‑ 0.031 0.010 0.008 0.029 ‑ ‑ ‑ ‑ ‑

ASD ST vs VPA 
2.5 μM

0.027 ‑ 0.036 < 0.001 < 0.001 0.040 ‑ 0.001 ‑ <0.001 ‑

VPA 1 μM vs 
VPA 2.5 μM

‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 0.024 ‑

Mothers ST vs VPA 1 μM 0.018 0.001 0.002 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

CI ST vs VPA 
2.5 μM

‑ < 0.001 < 0.001 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

VPA 1 μM vs 
VPA 2.5 μM

‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

Mothers ST vs VPA 1 μM < 0.001 < 0.001 ‑ ‑ ‑ ‑ ‑ ‑ < 0.001 ‑ ‑

ASD ST vs VPA 
2.5 μM

< 0.001 < 0.001 ‑ ‑ < 0.001 <0.001 0.001 ‑ < 0.001 0.001 ‑

VPA 1μM vs 
VPA 2.5 μM

‑ ‑ ‑ ‑ < 0.001 0.018 ‑ ‑ ‑ ‑ ‑

Fathers ST vs VPA 1 μM ‑ ‑ ‑ 0.004 ‑ ‑ ‑ ‑ ‑ ‑ ‑

CI ST vs VPA 
2.5 μM

0.028 0.021 < 0.001 0.002 ‑ ‑ 0.027 ‑ ‑ ‑ ‑

VPA 1mM vs 
VPA 2.5 μM

‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

Fathers ST vs  VPA 
1 μM

‑ < 0.001 ‑ < 0.001 ‑ ‑ ‑ 0.039 ‑ ‑ ‑

ASD ST vs  VPA 
2.5 μM

‑ < 0.001 ‑ 0.041 ‑ ‑ ‑ 0.040 ‑ ‑ ‑

VPA 1 μM vs 
VPA2.5 μM

‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
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representing the link between genetic susceptibility and 
environmental risk factors [12, 32].

Herein, we investigated whether abnormal expression 
of HERVs and cytokines found in PBMCs from autistic 
children and their parents can be modulated by expos-
ing PBMCs to stimulating factors, such as IL-2 and PHA, 
or drugs, such as the antiepileptic drug valproic acid and 
the antiretroviral drug efavirenz. Notable, the results 
demonstrated that PBMCs from ASD children and their 
mothers share intrinsic responsiveness to microenvi-
ronmental stimuli. Indeed, the in vitro exposure to IL-2 
and PHA significantly increased HERV-H, HERV-K and 
HEMO in ASD children and pHERV-W in their mothers. 
It has been hypnotized that HERVs could be involved in 
ASD pathogenesis due to their intrinsic responsiveness 
to microenvironmental stress and external stimuli, such 
as nutrients, hormones, cytokines and pathogens, likely 
via epigenetic mechanisms [25, 36]. The epigenetic regu-
lation is indeed essential during embryonic development 
leading to cell commitment and tissues specification [37], 
when a global remodeling occurs, and any alteration 
could impact neurodevelopment and cognitive function 
[38]. In this context, HERV dysregulation could poten-
tially influence central nervous system development. 

Accordingly, non-coding RNA (ncRNAs) expressed by 
the HERV-H group and the recruitment of specific cel-
lular transcriptional factors on HERV-H Long Terminal 
Repeats (LTRs) are involved in the conservation of stem 
cell identity during embryogenesis [39, 40]. HERV-K is 
also required in embryogenesis during the preimplan-
tation phase and in maintaining the pluripotent state of 
embryonic cells [41]. Finally, it is interesting to note that 
HEMO, an ancestral env gene in humans, has also been 
found expressed in embryos, already in the early stages 
of development and all subsequent periods of differen-
tiation [31]. On the other side, the pHERV-W, initially 
referred as the multiple sclerosis-associated retrovirus 
(MSRV), encodes an immunopathogenic and neurotoxic 
envelope protein (HERV-W ENV), and has been associ-
ated with human inflammatory and autoimmune diseases 
and recently with COVID-19 [26, 42]. In COVID-19 
patients, elevated HERV-W ENV protein expression has 
been found associated with certain pathogenic features 
of the disease, peculiarly in more severe cases. Moreo-
ver, in  vitro exposure of PBMCs from healthy donors 
to SARS-CoV-2 Spike protein induced an early expres-
sion of HERV-W ENV, and ahead of the induction of 
IL-6, suggesting early HERV activation consistent with 

Table 3 Non‑parametric Friedman test on HERV and cytokines expression in PBMCs exposed in vitro to Efavirenz

HERVs human endogenous retroviruses, PBMCs peripheral blood mononuclear cells, IL- Interleukin, TNF tumor necrosis factor, INF interferon, CI control individuals, 
ASD autism spectrum disorder, T0 basaline, NS not stimulated, ST stimulated, VPA Valproic acid, EFV efavirenz

HERV-H HERV-K HEMO HERV-W pHERV-W IL-1β IL-6 IL-8 IL-10 TNF-α INF-γ

Children ST vs EFV 1 μM – 0.010 0.023 0.041 – – – – – ‑ 0.030

CI ST vs EFV 2.5 μM – 0.001 – – – – – – – – 0.027

EFV 1 μM vs 
EFV2.5 μM

– – 0.022 0.016 – – – – – – –

Children ST vs EFV 1 μM 0.040 – 0.042 0.016 0.010 0.036 – – – – –

ASD ST vs EFV 2.5 μM 0.012 0.021 0.046 < 0.001 < 0.001 0.0 – 0.002 – <0.001 –

EFV 1 μM vs 
EFV 2.5 μM

– – – – – – – – – 0.029 –

Mothers ST vs EFV 1μM 0.022 0.010 0.006 – – – – – – – –

CI ST vs EFV 2.5 μM – 0.001 < 0.001 – – – – – – – –

EFV 1 μM vs 
EF V2.5 μM

– – – – – – – – – – –

Mothers ST vs EFV 1 μM 0.005 < 0.001 – – – – – – 0.002 – –

ASD ST vs EFV 2.5 μM < 0.001 < 0.001 – – < 0.001 <0.001 0.002 – < 0.001 0.005 –

EFV 1 μM vs 
EFV 2.5 μM

– ‑ – – < 0.001 0.032 – – ‑ – –

Fathers ST vs EFV 1 μM – ‑ – 0.010 – – – – – – –

CI ST vs EFV 2.5 μM 0.023 0.026 0.004 0.002 – – 0.030 – – – –

EFV 1 μM vs 
EFV 2.5 μM

– ‑ – – – – – – – – –

Fathers ST vs EFV 1 μM – 0.002 – 0,021 – – – 0.050 – – –

ASD ST vs EFV 2.5 μM – 0.007 – 0.047 – – – 0.043 – – –

EFV 1 μM vs 
EFV 2.5 μM

– ‑ – – – – – – – – –
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its potential role in the inflammation process related to 
infectious diseases [42].

Furthermore, in the present study, we also observed 
that cytokine expression was modulated in parallel to 

HERVs, since in  vitro stimulation induced the expres-
sion of IL-1β, IL-6, TNF-α, IFN-γ in PBMCs from ASD 
children and their mothers and IL-8 and IL-10 only in 
ASD mothers. Accordingly, growing evidence suggests a 

Fig. 3 HERVs and cytokines expression in PBMCs from ASD children, their parents and control individuals treated with Efavirenz. HERV 
transcriptional activity (A) and cytokines expression levels (B) were analysed in PBMCs treated with Efavirenz (EFV) at a final concentration of 2.5 µM 
(2.5) and 1 µM (1) by RT‑Real time PCR. The results are represented as box plots, depicting mild (black dot), and extreme outliers (asterisk) for each 
group. Red bordered white boxes = control individuals; Red bordered grey boxes = ASD children and their parents
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link between immune system dysregulation and autism, 
with immune abnormalities described in individuals with 
ASD as well as their family members [32, 43, 44]. In ASD 
children high levels of IFN-γ were found in the brain, 
and IL-6 and TNF-α in the blood and cerebrospinal fluid 
[45, 46]. An elevated expression of several cytokines, like 

IFN-γ, IL-1β and IL-8 was also observed in the serum of 
pregnant women who had given birth to children later 
diagnosed autistic [47, 48]. Interestingly, IL-6 can con-
tribute to neurodevelopmental disorders like autism 
and schizophrenia, as suggested by the observation that 
the administration of IL-6 to pregnant dams mimics the 

Fig. 3 continued
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effects of maternal immune activation on the upregula-
tion of genes implicated in autism and schizophrenia 
in foetal brain tissue [49]. Moreover, IL-6 can regulate 
cognitive-associated genes via promotors localized in the 
LTRs of the MER41 family of primate-specific HERVs, 
underling the connection among immune, LTR-mediated 
gene expression and cognitive pathways in human dis-
abilities [50]. High levels of IL-6 and IL-1β have been 
also associated with more severe behavioural deficits in 
children with autism [45], while high levels of the anti-
inflammatory marker IL-10 have been found in individu-
als with mild autism-related behavioural impairments 
[51]. Of note, IL-10 is an important crosstalk media-
tor between maternal immunity and foetal growth, and 
recently it has been proposed that maternal genetics may 
influence the foetal neurodevelopment and therefore also 
the autistic phenotype in offspring through the altera-
tion of IL-10-mediated maternal-foetal immunosuppres-
sion [52]. It is worth mentioning that ASD children and 
their mothers share intrinsic responsiveness of PBMCs to 
microenvironmental changes in expressing HERVs and 
pro-inflammatory cytokines, whereas no association was 
found with fathers or in control families. The common 
expression profile in ASD children and their mothers, and 
the discrepancy with fathers, support the hypothesis of 
maternal imprinting as a contributing factor in increasing 
susceptibility to neurodevelopmental disorders and also 
suggests that the interaction between HERV activity and 
inflammation may play a pivotal role in the etiopathogen-
esis of ASD [12, 32]. Maternal imprinting could involve 
mitochondrial activity, as these organelles are inherited 
exclusively via maternal lineage. Mitochondrial dysfunc-
tions are described in autism [53] and it’s well established 
the that mitochondria play an important role in modu-
lating innate immune response [54]. Nevertheless, also 
father-associated genetic factors could contribute to the 

development of the disorder, through pathways that have 
not yet been clarified [55, 56].

HERVs can shape innate immune response by mecha-
nisms, including the regulation of the expression of 
neighboring genes and the stimulation of pattern rec-
ognition receptors (PRRs). The up-regulation of HERV 
transcription can lead to the release of HERV-derived 
pathogen-associated molecular patterns (PAMPs), that 
evoke the production of pro-inflammatory effectors [57]. 
Since HERVs are physiologically expressed in humans 
[58] or can be activated by microenvironmental changes, 
they could provide continuous triggers to the host innate 
immune sensors. On the other side, the inflammatory 
effectors could in turn further increase HERV activity.

Herein, we demonstrated that also the in  vitro expo-
sure to VPA modified the expression of different HERVs 
and cytokines. It’s well-established that VPA adminis-
tration in pregnant women has been associated with an 
increased risk of autism in the offspring [59, 60]. VPA 
could act directly, interfering with the neurotransmis-
sion process, or indirectly via epigenetic regulation of 
genes implicated in immune system and brain function 
and development [61–63]. Here we observed that VPA 
treatment modulated the expression of HERV-H, HERV-
W, pHERV-W, IL-8 and TNF-α in PBMCs from ASD 
children and HERV-H, HERV-K, pHERV-W, IL-1β, IL-6, 
IL-10 and TNF-α in PBMCs from their mothers. The con-
comitant modulation of HERVs and cytokines is in line 
with our previous findings in preclinical studies in which, 
beginning from intrauterine life and up to adulthood, 
high expression levels of ERVs and cytokines were found 
in mice prenatally exposed to valproic acid [33]. Interest-
ingly, the altered ERV expression was transgenerationally 
transmitted via maternal lineage, probably through epi-
genetic mechanisms, in parallel to the autistic-like phe-
notype [34]. Moreover, the exposure of pregnant rodents 
to infectious agents (e.g., influenza virus, Escherichia 
coli) or to a synthetic analogue of viral double-stranded 
RNA [polyinosinic–polycytidylic acid (Poly (I:C)], leads 
to the maternal immune activation and the production of 
proinflammatory cytokines [64–66]. Cytokines can cross 
the placenta, or be produced in loco, with a consequent 
gene dysregulation in the foetus, affecting brain function 
and development and leading to a permanent dysregula-
tion of the immune system in the offspring [67, 68].

We also investigated whether exposure to an antiret-
roviral drug can specifically restore the abnormal HERV 
activity found in PBMCs from ASD children and their 
mothers. The use of antiretroviral drugs to inhibit HERV 
expression has been already proven in vitro and proposed 
in the setting of combined therapy in cancer and neuro-
logical conditions in which HERVs have been implicated 

Table 4 Demographic information of individuals included in the 
study

ASD Control individuals

Numbers of families 21 14

Children (number) 21 21

Male 18 18

Female 3 3

Ratio male/female 6 6

Median age (range) 4.8(2–10) 5(2–17)

Mothers (number) 21 14

Median age (range) 35.3(31–42) 36.5(26–43)

Fathers (number) 21 14

Median age (range) 40.67(29–47) 43.5(29–47)



Page 14 of 18Cipriani et al. Retrovirology           (2022) 19:26 

[69–73]. Indeed, EFV has already been shown to inhibit 
the endogenous reverse transcriptase activity in leuke-
mic cells and several human cell lines [70–72, 74], and 
we previously demonstrated that the antiretroviral drugs 
azidothymidine and EFV can inhibit the expression of 
HERV-K and HERV-H in cancer cells under unfavorable 
culture conditions [69, 75]. Herein we found that EFV 
modulates HERV activity in PBMCs from ASD children 
and their mothers, restoring values similar to those of the 
corresponding controls. Indeed, EFV treatment reduced 
HERV-H and HERV-K expression in PBMCs from ASD 
children and their mothers and HERV-W and pHERV-
W only in ASD mothers, while, conversely, increased 
HERV-W activity in ASD children. The reduction of 
pHERV-W observed in ASD mothers is in line with the 
results reported by Morandi et al. in lymphoblastoid cell 
lines [73], and with the hypothesis that antiretroviral 
therapy for HIV could potentially limit the progression 
of multiple sclerosis [76–78]. Notable, EFV treatment 
in PBMCs from ASD children also reduced the expres-
sion of the pro-inflammatory cytokines IL-1→, IL-6 and 
TNF-α, maintaining at high levels the expression of regu-
latory cytokine IL-10, while in PBMCs from ASD moth-
ers reduced the expression of all the cytokines analysed, 
although maintaining high levels of IL-10 and IFN©. 
Thus, EFV specifically restored the expression of certain 
HERVs with a concomitant modulation of cytokines, in 
particular lowering the proinflammatory while maintain-
ing high the regulatory ones, underlining the close inter-
play between HERV activity and inflammation. Another 
mechanism by which HERVs could contribute to patho-
genic mechanisms involved in ASD concerns the possi-
bility that HERV transcripts may act with RNA-mediated 
toxicity. RNA-mediated mechanisms of disease patho-
genesis have been recognized implicated in the context 
of neurological disorders, such as myoclonic epilepsy, 
myotonic dystrophy, Fragile X syndrome, Huntington’s 
disease-like 2 and amyotrophic lateral sclerosis [79–83]. 
Intriguingly, a recent paper indicates a potential new 
function of HERV-K transcripts in neurodegeneration, 
via trigger TLR7 and TLR8 signaling in a mouse model of 
Alzheimer’s disease [84].

The main limitation of our study is the small num-
ber of the individuals enrolled; therefore, our findings 
need to be replicated in larger studies. Moreover, a dif-
ferent response of lymphocytes to in  vitro stimulation 
in expressing HERVs and cytokines depending on the 
subjects’ age cannot be excluded, but no correlations 
emerged in our cohort (data not shown) and also this 
could be related to the relative small sample size. In 
addition, this is an in  vitro study on PBMCs, given the 

inability of accessing human neurons. A protocol for 
transdifferentiating human circulating monocytes into 
neuron-like cells, expressing several genes and proteins 
associated with neuronal structure, could circumvent this 
obstacle [85].

Conclusions
HERVs have been proposed as contributing factors in 
autism due to their role in human embryogenesis, their 
intrinsic responsiveness to stimuli, and their interaction 
with the immune system.

Here we show that HERVs and cytokines expression 
can be modulated in PBMCs from autistic children and 
their mothers by in vitro with different stimuli, and inter-
estingly the antiretroviral drug Efavirenz restores the 
expression of specific HERV families to values similar to 
those of the controls, also reducing the expression of pro-
inflammatory cytokines but keeping the regulatory ones 
high. Although we are far from demonstrating a causal 
relationship between deregulation of HERV expression, 
immune alteration, and autism, our findings could open 
new perspectives to study the pathophysiology of HERVs 
and biological mechanisms underlying neurodevelop-
mental derailment. Moreover, through the use of preclin-
ical models of autism it could be elucidated whether the 
administration of antiretroviral drugs during pregnancy 
can prevent or improve the altered behavioral phenotype 
in offspring.

Materials and methods
Demographic characteristics of ASD children and control 
individuals
The study was carried out on a subgroup of the cohort 
of ASD and control individuals (CI) families used in 
our previous study [32]. Specifically, here we analysed 
PBMCs obtained from a total of 112 individuals belong-
ing to 35 families, of which 21 with ASD children and 
14 with typical-developing children; five control families 
were composed of two children, one of three children, 
and the remaining of one child. In Table  4 the demo-
graphic information of individuals included in the pre-
sent study is reported. No statistical differences were 
found in the comparison of the median age among the 
children, mothers and fathers’ groups, and for sex ratio 
between the children groups.

The families including ASD individuals were recruited 
at the Child Psychiatry and Neurology Unit of “Tor Ver-
gata” University (Rome, Italy); children with ASD were 
diagnosed according to the  Diagnostic and Statistical 
Manual of Mental Disorders-IV, text revision (DSM-
IV-TR)  as Autistic Disorder (AD; 21/21) and confirmed 
by the DSM-5 criteria [2]. All ASD children performed 
a clinical evaluation by  Autism Diagnostic Observation 
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Schedule (ADOS-2), including a specific index of symp-
toms severity calculated with Calibrate Severity Score 
(CSS = 4.815; range 1–10). ASD children with known 
infectious, metabolic or genetic diseases, chromosomal 
abnormalities, seizures, identifiable neurological syn-
dromes, or focal signs were excluded from the study.

Age- and sex-matched healthy volunteers were 
recruited among the employees of the Medicine Faculty 
of “Tor Vergata” University and the Child Neurology 
and Psychiatry Unit of “Tor Vergata” Hospital (Rome, 
Italy) and enrolled together with their typical develop-
ing children who attended outpatient facilities for routine 
examinations. None of them reported neurological or 
psychiatric disorders or the presence of ongoing infec-
tions in their medical history. All enrolled individuals 
were not taking any medications at the sampling time.

Peripheral blood mononuclear cells isolation and culture 
conditions
PBMCs were isolated from blood samples, after dilution 
1:4 with phosphate-buffered saline (PBS) (Sigma-Aldrich, 
MO, USA), by density gradient centrifugation (Lympho-
lyte-H, Merck Darmstadt, Germany). After washing with 
PBS, PBMCs were counted and collected immediately 
(condition named basal level,  T0) or seeded in 24-well tis-
sue culture plate in RPMI 1640 medium supplemented 
with 12% (v/v) heat-inactivated fetal bovine serum (FBS), 
L-glutamine (2 mM), penicillin (50 U/ml), streptomycin 
(50 U/ml) (all from Sigma-Aldrich, MO, USA). For the 
purpose of the study, PBMCs were maintained in culture 
without any stimulations (hereinafter NS) or in presence 
of Interleukin-2 (IL-2, 20U/ml) and Phytohaemagglutinin 
(PHA, 2 μg/ml), (hereinafter ST) for 72 h. Moreover, to 
evaluate the effect of Efavirenz (kindly provided by Cor-
rado Spadafora and named hereinafter EFV) and Valproic 
acid (Sigma-Aldrich, MO, USA; hereinafter VPA), the 
drugs were added at the time of setting up the culture, 
simultaneously with IL-2 (20U / ml) and PHA, (2 μg/ml), 
and cells were maintained at 37  °C in a humidified 5% 
 CO2 atmosphere. After 72 h of treatment, PBMCs were 
collected, washed twice with PBS, recovered by 8  min 
centrifugation at 600 g at 4 °C, and stored at -80 °C.

RNA extraction and RT-real time PCR
Total RNA was extracted from PBMCs using the Nucle-
oSpin RNA kit according to the manufacturer’s instruc-
tions (Macherey–Nagel, Dueren, Germany). Two 
hundred fifty nanograms of DNase-treated RNA were 
reverse-transcribed into cDNA using Improm-II Reverse 
Transcription System (Promega, Fitchburg, WI, USA) 
according to the manufacturer’s protocol, in a total 
volume of 20  µl. The transcriptional levels of selected 
HERVs and cytokines were assessed by Real-time PCR in 

CFX96 Real-Time System (Bio-Rad), using SYBR Green 
chemistry (iTaq Universal SYBR green Supermix, Bio-
rad). Specific pairs of primers for env of HERV-H, HERV-
K, HERV-W [29], HEMO [31] and pHERV-W [42], and 
cytokines expression including IL-1β, IL-6, IL-8, IL-10, 
TNF-α, IFN-γ [32] were used.

To set up the Real-Time PCR a serial dilution (tenfold) 
was done to calculate efficiencies and correlation coeffi-
cient. The amplification efficiency was calculated by the 
formula [efficiency = 10(− 1/slope)] and all the primer 
pairs showed an efficiency ranging from 0.95 to 0.97. 
To verify the specificity of the primers and to exclude 
any false positives, DNA sequencing of PCR samples 
from individuals belonging to ASD and control families, 
was performed. Real-Time PCR included 2.0  µl of 1:10 
diluted cDNA, 10 µl of SYBR green Supermix, and spe-
cific primers ranging from 100 to 200 nM, in a total vol-
ume of 20 µl, and was conducted for 1 cycle at 95◦C for 
5 min and then for 45 cycles of 95◦C for 10 s and 60◦C 
for 15  s. Each sample was analyzed in triplicate and to 
check out any possible contamination, a negative control 
was included in each experiment. The housekeeping gene 
β-glucuronidase (GUSB) [29] was used to normalize the 
results. Each experiment was completed with a melting 
curve analysis to confirm the specificity of amplification 
and the lack of non-specific products and primer dimers. 
Quantification was performed using the threshold cycle 
(Ct) comparative method and the relative expression was 
calculated as follows  2−[ΔCt(sample)− ΔCt(calibrator) =  2−ΔΔCt 
where ΔCt (sample) = [Ct (target gene)-Ct (housekeeping 
gene)] and ΔCt (calibrator) was the mean of ΔCT of all 
the samples from typical developing individuals.

Statistical analysis
Statistical analysis of group-wise expression levels was 
performed through the non-parametric Friedman test. 
In order to compare stimulation response across groups 
(ASD and CI) while taking confounds into account, for 
each stimulus we employed linear mixed models (with 
each biomarker as the dependent variable) which included 
timepoint as repeated within-subject factor (baseline 
vs 72  h), a between-subject factor (diagnostic group), a 
timepoint*diagnostic group interaction term, as well as age, 
sex, and kinship (coded as family membership) as covari-
ates of no interest. All mixed models employed unstruc-
tured estimate of the covariance matrix, i.e. all covariance 
elements were estimated directly from data. The analysis 
was repeated separately in children mothers, and fathers. 
Data analyses were performed using SPSS statistical soft-
ware system (version 24.0 for Windows, USA). Statistically 
significant comparisons were considered when p < 0.050.
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