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Abstract 

While HIV-1 is primarily an infection of CD4 + T cells, there is an emerging interest towards understanding how infec-
tion of other cell types can contribute to HIV-associated comorbidities. For HIV-1 to cross from the blood stream into 
tissues, the virus must come in direct contact with the vascular endothelium, including pericytes that envelope vas-
cular endothelial cells. Pericytes are multifunctional cells that have been recognized for their essential role in angio-
genesis, vessel maintenance, and blood flow rate. Most importantly, recent evidence has shown that pericytes can 
be a target of HIV-1 infection and support an active stage of the viral life cycle, with latency also suggested by in vitro 
data. Pericyte infection by HIV-1 has been confirmed in the postmortem human brains and in lungs from SIV-infected 
macaques. Moreover, pericyte dysfunction has been implicated in a variety of pathologies ranging from ischemic 
stroke to diabetes, which are common comorbidities among people with HIV-1. In this review, we discuss the role of 
pericytes during HIV-1 infection and their contribution to the progression of HIV-associated comorbidities.
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Introduction
One of the prevailing health concerns in HIV-1 man-
agement is that virally suppressed patients remain at 
increased risk of HIV-associated comorbidities. Indeed, 
several epidemiological studies have delineated a higher 
susceptibility to mental health, neurodegenerative, res-
piratory, and cardiovascular diseases in HIV-1 infected 
individuals [1–4]. Among comorbidities, ~ 56% people 
living with HIV (PLWH) develop hypertension, 2–15% 
develop chronic obstructive pulmonary disease, 15–20% 
suffer from depression, 1–5% experience a stroke in their 
lifetime, and 4–34% show ischemic lesions at autopsy 
[5–9]. Emerging evidence indicates that HIV-1 infection 
is not limited to T-cells or monocytes/macrophages, but 
it affects a variety of different cell types in several com-
partments of the body [10–14]. Indeed, it has become 
apparent that understanding HIV-1 infection in non-T 

cells is key to treating comorbidities that persist at low 
viral levels. Several non-T cell reservoirs have been dis-
covered including astrocytes, microglia, dendritic cells, 
and pericytes [10–12, 15–20]. We propose that by study-
ing the interactions of HIV-1 with pericytes from dif-
ferent vascular beds, we may better design and treat 
vascular comorbidities arising from this complex cellular 
interplay.

Pericytes are mural cells surrounded by a basement 
membrane, situated on the exterior of the endothelial 
cells in capillaries, pre-arterioles, collecting venules, and 
pre-venules [21]. Despite their physiological importance, 
a complete understanding of pericyte developmental 
origins remains elusive. Indeed, pericytes are heterog-
enous throughout the body and even within specific tis-
sues. Ectodermal tissue gives rise to forebrain, skin, lung, 
face, and heart pericytes and mesoderm gives rise to all 
other tissues. Even within the population of mesodermal 
pericytes there are different subsets including the sclero-
tomal compartment, mesothelium, and dorsal aorta [22, 
23]. Pericytes can express multiple markers and have a 
high degree of plasticity, which lead to difficulties when 
determining their ontogeny [24] (Fig. 1). The importance 
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of pericyte morphology and function vary depending 
upon their location in the vascular tree, and how they 
have differentiated. However, understanding their signal-
ing and structural pathways may aid us in targeting clini-
cal comorbidities that manifest during HIV-1 infection 
[25–27].

A typical function of pericytes is regulation of capil-
lary blood flow, endothelial maintenance, and regulation 
of immune cell entry. To regulate capillary blood flow, 
thin processes of pericytes surround vessels and contract 
or expand, which results in a decrease or increase in the 
cross-sectional area of the vessel cavity, and modulation 
of flow rate [28]. A change in the cells’ membrane poten-
tial and a subsequent influx of calcium ions triggers an 
interaction between ɑ-smooth muscle actin filaments 
(ɑ-SMA) and myosin to create mechanical tension on 
the extracellular matrix of the pericyte, contracting the 
cell [29]. Due to the metabolic demands of contraction 
events, pericytes require high numbers of mitochondria 
and are highly susceptible to mitochondrial dysfunction. 
In addition to blood flow regulation, pericytes commu-
nicate with neighboring endothelial cells that form the 
basement membrane of the blood vasculature [25]. The 
pericyte-endothelial interface is composed of several 

important signaling pathways responsible for mutual 
cell survival. Pericytes secrete angiotensin which pro-
motes barrier stability and in turn, endothelial cells 
secrete platelet derived growth factor-B (PDGF-B) which 
promotes pericyte stability and survival. The anti- and 
pro-apoptotic protein, B-cell lymphoma-w (BCL-w), is 
secreted by pericytes and stimulates vascular endothelial 
growth factor A (VEGF-A) expression in endothelial cells 
and can ultimately halt unnecessary apoptosis [30]. Addi-
tionally, the process of angiogenesis is, in part, mediated 
by the interplay between Neuron-glial antigen 2 (NG2) 
and β1 integrin transmembrane receptors, and the for-
mation of gap junction proteins maintaining vessel integ-
rity [27, 31, 32].

Pericytes play a role in microvascular circulation nota-
bly in the lungs and striated muscles. However, the most 
prominent density of endothelial cell coverage by peri-
cytes is in the brain, where they cover over 90% of the 
endothelium [33, 34]. Central nervous system (CNS) 
pericytes contribute to the structure of the neurovascu-
lar unit (NVU), a functional component of the blood-
brain barrier (BBB) and the blood-retinal barrier (BRB). 
Pericytes play a key role in the immunological function 
of these systems. By reducing the expression of signaling 

Fig. 1 Heterogeneity of pericyte origins throughout the body
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proteins that increase vascular permeability, pericytes 
reinforce the structural integrity of the BBB and BRB; 
thereby, preventing neuroinflammation via endothe-
lial cell-mediated transmigration of leukocytes. Loss of 
pericyte coverage and function represents a significant 
challenge for the body. A decrease in pericyte coverage 
has been observed in several diseases, including diabetic 
retinopathy, hypertension, kidney disease, and stroke [8, 
35–40] (Fig. 2).

The vascular system is critical to every organ in the 
body, disseminating nutrients and oxygen to maintain 
proper function and the pericyte-endothelial interface is 
actively remodeled during angiogenesis, development, 
and during acute and chronic vascular disorders [6, 41, 
42]. Viral infection of pericytes can lead to vascular leak-
age, increased viral exposure due to barrier breakdown, 
including the CNS, as well as inflammatory, neurologi-
cal, cognitive, and developmental effects. Indeed, several 
HIV-1 associated comorbidities are cardio- or cerebro-
vascular related or include a breakdown of the vascu-
lar system. Here we summarize the current evidence 
for pericytes as key contributors to HIV-1 infection 
and how pericyte dysfunction leads to HIV-associated 
complications.

Pericytes and brain infection by HIV‑1
Brain pericytes are part of a microvascular system that 
forms the BBB, a highly selective semipermeable inter-
phase between the blood stream and brain parenchyma 
[25, 43]. Pericytes are highly heterogeneous, their origin 
varies in different parts of the body and even in various 
regions of the brain [22, 23]. While pericytes in the fore-
brain are derived from neural crest cells, pericytes in the 
rest of the brain appear to originate from mesenchymal 
stem cells of the mesoderm [44]. Moreover, recent evi-
dence indicates that myeloid progenitors, arising from 
dorsal aorta mesoderm, also contribute to the develop-
ment of pericytes in the brain. In fact, it was proposed 

that a substantial pool of brain pericytes originate from 
yolk-sac-derived macrophage progenitors [45] (Fig. 1).

The neurovascular unit (NVU) of the BBB is com-
posed of brain microvascular endothelial cells, pericytes, 
and astrocytes [46, 47]. Tight junction (TJ) proteins link 
endothelial cells together and form a selective permeable 
barrier between the blood and the CNS, which prevents 
toxic molecules, viruses, bacteria, and inflammatory cells 
from reaching the brain [34, 48]. Transporter proteins on 
both sides of BBB keep homeostasis by allowing for the 
selective exchange of nutrients into the brain and of toxic 
substances out. By using different pathways, HIV-1 can 
cross the BBB early after infection and enter the brain 
parenchyma, leading to a persistent infection of the CNS 
[20, 49–51]. The protected nature of the CNS is a major 
challenge for treating HIV-1 infection because of anti-
retroviral therapy (ART) drugs’ inability to efficiently 
cross the BBB and accumulate in the brain parenchyma 
[52, 53]. Lower ART concentrations in the CNS allow the 
virus to accumulate in the brain resulting in a progressive 
cycle of cell damage and repair [52]. Over the lifetime of 
the individual, cell damage and subsequent neuroinflam-
mation caused by HIV-1 infection can progress to HIV-
associated neurocognitive disorders (HAND) [54, 55] 
(Fig. 3).

While the role of endothelial cells in the formation of 
the BBB has been recognized, emerging evidence indi-
cates a critical role for pericytes in the maintenance of 
BBB functions [56–58]. BBB pericytes have been shown 
to regulate paracellular and trans-endothelial fluid trans-
port, maintain homeostasis of the microenvironment, 
and protect endothelial cells [59]. Additionally, BBB 
pericytes have been shown to play a key role during viral 
infections such as HIV-1 infection in the brain [60, 61].

The mechanisms of HIV-1 infection of pericytes 
remain elusive despite significant progress achieved in 
recent years. Within 48 h of pericyte infection by HIV-1, 
there is a significant increase in viral replication, which 

Fig. 2 Physiological effects of pericyte loss in function and disease
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is associated with NFKB acetylation and a decrease in 
occludin expression. These events have been linked to 
activation of the SIRT-1 pathway, which is integral to 
controlling NFκB acetylation. HIV-1 hijacking of the 
SIRT-1 pathway for viral replication is well established 
in other cells; however, this process in pericytes appears 
to be accomplished by depleting cellular occludin levels. 
Indeed, overexpression of occludin leads to a decrease 
in viral loads and diminished SIRT-1 activation [41, 62]. 
Additionally, several experiments assessing HIV-1 rep-
lication show that BBB pericytes can be productively 
infected by HIV-1 in  vivo and in  vitro [12, 20, 60, 63]. 
Indeed, BBB pericytes express CD4, the main HIV-1 
receptor, and prominent levels of the HIV-1 co-recep-
tors, CCR5 and CXCR4, which allows them to be directly 
infected by both X4 and R5 tropic HIV-1 strains [12]. 
Measure of reverse transcriptase activity and p24 levels 
from supernatant of infected cells reveals that pericytes 
exhibit the highest viral replication 2–3 days post HIV-1 
infection, followed by a steady decrease after 7–10 days 
post-infection. Furthermore, BBB pericytes exhibit a cor-
relation between a decrease in HIV-1 production and an 
increase in HIV-1 host genome integration. Moreover, an 
increase in p24 and HIV-1 RNA production by latently 
infected pericytes can be achieved by exposure to his-
tone deacetylase inhibitors and tumor necrosis factor 

[20]. Altogether, the evidence points to BBB pericytes as 
capable of active and latent infection and representing a 
potential target for an HIV-1 reservoir in the CNS.

Several studies have shown a correlation between 
HIV-1 brain infection, neurological damage, and an 
increase in BBB permeability [38, 50, 64, 65]. Alterations 
of BBB integrity after HIV-1 infection are associated with 
changes in TJ protein expression and an increase in pro-
inflammatory responses. Specifically, HIV-1 infection of 
pericytes causes a decrease in the expression of TJ pro-
teins, such as occludin and ZO-1, mitochondrial dys-
function, and IL-6 production [41, 66, 67]. During HIV-1 
infection, there is also a significant decrease in BBB peri-
cyte coverage of the brain endothelium [12, 20, 65, 68], 
which can potentiate alterations to BBB integrity that 
facilitates the HIV-1 penetration into the CNS [50, 69, 
70]. Additionally, pericyte to endothelial cell-to-cell com-
munication is critical for the maintenance of endothelial 
cells and TJ integrity. Pericyte cellular signaling has been 
shown to change during HIV-1 infection. Injury signals 
are propagated from infected pericytes to neighboring 
cells via gap junction (GJ)-mediated intercellular com-
munication and occludin, caveolin-1, and alix, which 
form a multi-protein complex (cav-1-ocln-alix) that 
alters pericyte gene expression and membrane plasticity 
following infection [60, 63]. These molecular changes in 

Fig. 3 Understanding the effects of HIV-1 on blood brain barrier physiology
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BBB pericytes have direct outcomes on cerebrovascular 
health. BBB disruption caused by HIV-1 infection has 
been shown to potentiate stroke sizes and worsen post 
stroke recoveries in mouse models infected with Eco-
HIV [68]. EcoHIV is a chimeric virus that was generated 
by replacing the coding region of the surface envelope 
glycoprotein, gp120, in HIV-1 with the envelope-coding 
region (gp80) from ecotropic murine leukemia virus, a 
retrovirus that infects only rodents, enabling EcoHIV to 
use mice as a host and restricting EcoHIV from infecting 
human cells [71]. Moreover, HIV-1 infected individuals 
are at a higher risk for several cerebrovascular/neurologi-
cal comorbidities and understanding HIV-1 infection of 
BBB pericytes may be an important step to improving 
their quality of life [42, 64, 68, 72].

HIV‑1 infection of Peripheral Pericytes
Pericytes’ coverage of the microvascular endothelium is 
not limited to the brain but extends to peripheral tissues, 
making them potentially vulnerable to HIV-1 infection 
and HIV-associated comorbidities. While a pool of CNS 
pericytes share an origin from neural crest, most periph-
eral pericytes are derived from mesoderm, splitting 
the body into two crude subsets of mural cells (Fig.  1). 
Indeed, the presence of HIV-1 in pericytes defined by 
PDGFRβ expression has been confirmed in vitro in cul-
tured human lung pericytes and in vivo in lung tissue of 
SIV-infected macaques. Lung pericytes of both macaques 
and humans express the necessary receptor profile for 
HIV-1 infection [73]. Virally unsuppressed macaques 
exposed to SIV infection show detectable levels of HIV 
p24 production colocalizing to PDGFRβ in isolated 
lung pericytes. Infected human lung pericytes cul-
tured in  vitro produce functional viral particles capable 
of infecting a T cell line exposed to conditioned media, 
demonstrating viral transmission [73]. Disruption of per-
icyte function may contribute to chronic lung patholo-
gies seen in HIV-1 infected individuals, including chronic 
obstructive pulmonary disease which is diagnosed in up 
to 20% of patients [9, 74, 75].

Human retinal and brain tissue arise from the same 
embryonic origin, suggesting that the BRB may be simi-
larly susceptible to HIV-induced alterations as the BBB 
[76]. While productive HIV-1 infection of retinal peri-
cytes has yet to be confirmed, one of the most common 
reasons for vision loss in patients with HIV-1 is diabetic 
retinopathy [38, 77]. Retinopathy is a disease categorized 
by increased vascular permeability and progressive vas-
cular occlusion to the vessels in the eye. One of the hall-
marks of retinopathy is a loss of pericyte coverage at the 
BRB causing morphological changes and barrier dysfunc-
tion [35, 36]. Using evidence from the BBB we know that 
HIV-1 can cause a loss of BBB pericytes and a significant 

increase in BBB permeability. Understanding how HIV-1 
and hyperglycemia affect BRB pericytes may be critical to 
design novel therapeutics for HIV-associated retinopathy.

Current reports of brain and lung infection suggest that 
both neural crest- and mesoderm-derived pericytes are 
susceptible to HIV-1 infection. The intersection of HIV-1 
and pericyte research is a new field and with several HIV-
associated comorbidities revolving around vascular dam-
age (hypertension, stroke, heart disease) pericytes across 
the body may become important players in the treatment 
of HIV-1.

Modulation of pericyte biology by HIV‑1
Due to the high incidence of HIV-1 associated comor-
bidities and neurological disorders, defining how HIV-1 
modulates cellular pathways in pericytes is of critical rel-
evance to translational medicine. Several molecules in 
key pathways of cell survival, migration, and metabolism 
have shown to be significantly modulated during HIV-1 
infection of BBB pericytes. Exposure of pericytes to 
HIV-1 significantly decreased occludin levels 48  h after 
infection, followed by significant increases in caveolin-1 
and alix expression which steadily climbed to both 48 
and 72  h after infection. Modulation of the cav-1-ocln-
alix complex by HIV-1 can then contribute to decreased 
levels of IL-10, IL-15, INF-γ, and G-CSF and enhanced 
expression of IL-6, and MCP-1/CCL-2. Increases in 
IL-6 and decreases in IL-10 levels correspond to a pro-
inflammatory profile consistent with studies of HIV-1 in 
other cell types [63]. Interestingly, IL-6 is a major driver 
of neuroinflammation, which decreases expression of TJ 
proteins occludin and ZO-1 in endothelial cells, leading 
to a decrease in BBB integrity [63, 78–80] (Fig. 4).

Similarly, when exposed to pro-inflammatory factors, 
pericytes show a 50–60% decrease in platelet derived 
growth factor receptor (PDGFRβ) expression. PDGFRβ 
downstream signaling is involved in pericyte survival 
and maintenance; in contrast, loss of PDGFRβ leads to 
a decrease in pericyte coverage of endothelial cells and 
a decrease in angiopoietin-1 (Ang-1) production. Ang-1 
is responsible for Angiopoietin-1 receptor (TIE-2) acti-
vation in endothelial cells and is an important regulator 
of endothelial quiescence and activation. Loss of Ang-1 
leads to BBB instability and decreased pericyte coverage. 
The PDGFRβ-TIE-2 axis is just one example of the deli-
cate crosstalk that pericytes and endothelial cells share to 
maintain survival and how HIV-1 infection may lead to 
disruption of this balance [63, 81] (Fig. 4).

Additionally, pericytes exposed to HIV-1 increase 
the production of tumor necrosis factor alpha (TNF-
α) and interleukin-1beta (IL-1β). TNF-α and IL-1β are 
relevant molecules to HIV-1 infection and have several 
downstream effects on both cellular metabolism and 
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migration. Pericytes challenged by HIV-1, TNF-α, or 
IL-1B show a 60% downregulation in basement mem-
brane glycoproteins fibronectin (FN), nidogen-1 (NID-
1), nidogen-2 (NID-2), and show an increased migratory 
phenotype [81]. Pericytes and endothelial cells are 
responsible for basement membrane synthesis [25] and 
basement membrane abnormalities are known to be pre-
sent in several neurodegenerative and neurovascular dis-
eases [21, 82, 83] (Fig.  4). Lastly, increased extracellular 
glutamate caused by neuroinflammation acts as a neu-
rotoxin leading to mitochondrial dysfunction, reactive 
oxygen species generation, oxidative DNA damage, and 
cell death [84, 85]. During ischemic stroke and diabetic 
nephropathy, both BBB and BRB pericytes show sensitiv-
ity to glutamate excess. Pericytes cultured with TNF-α 
exhibit increased susceptibility to glutamate leading to 
mitochondrial dysfunction and oxidative stress, poten-
tiating neuroinflammation and pericyte loss at the BBB 
[20, 86–88]. Modulation of key pathways by HIV-1 has 
several implications for the blood vasculature and their 
surrounding tissues in the CNS and other organ systems.

Discussion, limitations, and conclusions
Among HIV-1 associated comorbidities, cardiovascular 
and cerebrovascular pathologies are prevalent, highlight-
ing the importance of vascular biology for the long-term 

outcome of the infection. For HIV-1 to enter tissues, viri-
ons must cross the blood vasculature via direct or indi-
rect interactions with endothelial cells and/or pericytes. 
Recent work has shown that pericytes possess the nec-
essary receptor profile for HIV-1 infection. Productive 
HIV-1 infection in pericytes has been confirmed using 
post-mortem brain samples, in  vivo SIV and EcoHIV 
infection, and in vitro work, while latent infection of per-
icytes has only been suggested based on in-vitro observa-
tions. CNS pericytes derive from neural crest while lung 
pericytes have mesodermal origins, together the neural 
crest and mesoderm encompass the origin of all pericytes 
in the body. Therefore, HIV-1 infection of both groups 
of pericytes reported in the literature suggests that all 
pericytes, independent of origin, are susceptible to HIV-1 
infection. Additionally, HIV-1 infection is capable of 
significantly modulating pericyte survival, metabolism, 
and migration pathways. Infected pericytes adopt a pro-
inflammatory state that has ramifications for cells that 
depend on pericyte cellular signaling. Conditioned media 
from HIV-1-infected pericyte culture has been shown to 
disrupt endothelial cell survival and have a potential to 
activate microglia and astrocytes, leading to an inflam-
matory cascade.

There are remaining important limitations to the cur-
rent studies of HIV-1 and pericyte infection. To date, all 

Fig. 4 Summary of major effects of HIV-1 on pericyte signaling
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post-mortem tissues that have been analyzed for HIV-1 
infection of pericytes have been obtained from infected 
individuals without ART treatment. Thus, there are no 
published results evaluating HIV-1 pericyte infection 
in post-mortem brain samples from virally suppressed 
patients. Nonetheless, the current studies provide proof 
of principle that pericytes of different origin and from 
different compartments are capable of infection and are 
a noteworthy cell type in the study of HIV-1. Pericytes 
are ubiquitous to every organ system and understanding 
the mechanisms of their infection may carry the potential 
to fill in several important gaps necessary to improve the 
quality of life for people living with HIV-1.
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