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Abstract 

Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory 
CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound 
that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors 
essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, 
such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still 
need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex 
and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 
transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical 
limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells 
and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA 
efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies 
of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency 
have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic 
features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT 
and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the fore-
most schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clear-
ance of persisting latently infected cells—the “Shock and Kill” strategy. For “Shock and Kill” to become efficient, effec-
tive, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation 
in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, 
initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the devel-
opment of more effective LRAs.
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Background
In untreated people with HIV (PWH), the unabated repli-
cation of HIV-1 in CD4+ T cells allows the virus to evade 
adaptive immune responses through rapid evolution, 
eventually leading to the profound depletion of these 
cells and susceptibility to opportunistic infections (AIDS) 
[1, 2]. Combination antiretroviral regimens (ART), first 
introduced in the late 1990s, are remarkably effective 
at blocking HIV-1 replication and preserving CD4+ cell 
populations. Despite its success at prolonging life, ART 
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remains imperfect since it must be administered for life 
and does not fully ameliorate co-morbidities such as 
HIV-associated neurocognitive disease, cardiovascular 
risk, or cancer risks. Unfortunately, ART also does little 
to address the viral reservoir. Prolonged viral remission 
after treatment interruption has only been seen in very 
rare individuals (< 1%) [3, 4] due to the persistence of 
latently infected cells. Interruption of ART almost always 
results in a rapid (2–8  weeks) rebound of viremia and 
reseeding of the virus in lymphoid tissues [5, 6]. Disap-
pointingly, although initiation of ART within days after 
infection can diminish the size of the replication-com-
petent HIV-1 reservoir and significantly delay the time 
to viral rebound, it does not result in ART-free remis-
sion [7]. Furthermore, HIV-1 persistence in ART-treated, 
virally suppressed individuals results in a chronic state of 
immune activation that is harmful to multiple organs and 
can stimulate viral rebound in the absence of ART [8].

Since T-cell sources of rebounding virus pose the ulti-
mate obstacle to a cure for HIV-1 infection, this review 
will focus on recent efforts to characterize the molecular 
mechanisms regulating HIV-1 transcription, including 
host-directed mechanisms that regulate the emergence of 
HIV-1 from latency in primary T cells. Historically, our 
understanding of the control of HIV-1 transcription and 
rebound has been based on studies in transformed cell 
models, such as Jurkat cells. Unfortunately, these models 
do not recapitulate the underlying cell biology of infected 
T cells, which transition from activated effector cells to 
quiescent memory cells. By placing HIV-1 latency in the 
context of the cell biology of primary T cells, we can now 
provide a more accurate molecular understanding of viral 
dynamics and persistence.

Main text
The effector‑to‑memory transition of T cells induces HIV‑1 
transcriptional silencing
HIV-1 infects multiple CD4+ cell types, including mac-
rophages [9, 10] and lymphocytes found primarily in 
lymph nodes [11] and gut [12]. However, the persistence 
of the virus during long-term ART in CD4+ T lympho-
cytes found in the blood, lymphoid organs, and mucosal 
lymphoid tissues requires the establishment of latency 
[13]. Although several groups have reported that HIV-1 
latency may be a consequence of the direct infection of 
resting CD4+ T-cell subsets [14–16], particularly non-
dividing follicular T helper cells in lymphoid tissues [17], 
overwhelming evidence, primarily derived from in vitro-
engineered primary cell infection models, has bolstered 
the hypothesis that the establishment of latent HIV-1 res-
ervoirs is a by-product of the achievement of immuno-
logical memory (reviewed in [18, 19]). Both proliferating 
effector T cells and effector T cells already transitioning 

to a resting memory state (EMT CD4+ T cells) may be 
targets of the initial infection (Fig.  1A). EMT CD4+ T 
cells express substantially higher levels of CCR5 than 
newly activated CD4+ T cells, making them more per-
missive to infection by CCR5-tropic HIV-1 [20]. Upon 
completion of reverse transcription, genome-integrated 
proviruses in these EMT CD4+ T cells are more likely to 
undergo a latent infection as the cells acquire a transcrip-
tionally repressive state [20]. Since circulating memory 
CD4+ T cells, the majority of which possess a central 
memory phenotype, are in a quiescent state that is non-
permissive for HIV-1 transcription and viral antigen pro-
duction, they can evade antiviral immune surveillance.

Successful generation of latently infected primary 
CD4+ T cells ex  vivo has relied on activating naïve or 
total CD4+ T cells through the T-cell receptor (TCR) as 
a prerequisite for permissive HIV-1 infection [21–23]. 
Acutely infected cells are then forced into quiescence 
to acquire a resting memory phenotype that establishes 
viral latency. Therefore, effector CD4+ T cells in vivo are 
expected to be much more permissive to HIV-1 infec-
tion since their activated state provides an intracellular 
environment conducive to the completion of the viral 
life cycle. While the majority of the productively infected 
cells are eliminated by viral cytopathic or host antiviral 
cytolytic responses, the physiological transition of a small 
surviving subset to quiescent memory cells substantially 
diminishes transcription initiation at the proviral long 
terminal repeat (LTR) due to the exclusion of crucial 
transcription initiation and elongation factors from the 
nucleus.

Studies showing that viral rebound is observed upon 
treatment interruption, even when ART is initiated 
within days of infection, support the idea that latency is 
established continuously during acute infection [24–28]. 
Recently, the landscape of productively infected cells 
at the earliest stages of HIV-1 infection was character-
ized by single-cell methods using the RV254/SEARCH 
010 cohort which enrolls acutely infected individuals in 
Fiebig stages I–V [29]. Using a combination of TCR and 
near full-length HIV genome sequencing, they demon-
strated that multiple independent infection events both 
in blood and lymph nodes drive the production of a rela-
tively homogeneous viral population during acute infec-
tion and that a latent pool of cells harboring intact HIV 
genomes that persist during ART is established early in 
infection [29].

HIV reservoir dynamics
The first evidence for persistent viral reservoirs came 
from studies of viral decay kinetics after ART initiation 
[25, 30–32]. The decay of plasma virus levels is multipha-
sic: During the first phase, the shutdown of viral spread 
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combined with the short half-life (< 1 d) of T cells that 
produce most of the plasma virus results in a rapid and 
steep decline. During the second phase, viral decline 
slows due to the slower turnover (t1/2 = 14 d) of addi-
tional infected cell populations, which are often assumed 
to include macrophages [9]. After ~ 3 months of therapy, 
plasma viral loads are usually below the threshold of 
detection by conventional assays, but viral persistence 
can be monitored by looking for infected T cells carry-
ing intact proviruses [33]. These assays show that CD4+ 
T cells with intact proviruses decay with a half-life of 
19  months [34], which is still shorter than that of the 

latently infected cells that persist on long-term ART, esti-
mated to have half-lives of about 44 months [35, 36].

The extended half-life of the viral reservoir seen dur-
ing long-term ART is a consequence of complex cel-
lular dynamics regulating the host T cells, resulting in a 
pseudo-steady state (Fig. 1B). Studies of proviral integra-
tion sites demonstrate that the HIV reservoir is main-
tained mainly through clonal expansion of memory T 
cells [37, 38]. This cellular proliferation is counter-bal-
anced by persistent low-level rates of viral reactivation 
and ensuing cell death [37–40].
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Fig. 1  HIV reservoir formation and dynamics. A The reservoir is established primarily in memory CD4+ T cells arising during the transition of infected 
effector cells to achieve immunological memory. Naïve cells become activated during HIV-1 infection due to HIV-1 itself and other antigenic stimuli. 
The resulting activated effector cells are ideal targets for productive HIV-1 infection. A large fraction of the infected effector cells will not survive, 
but an important subset become quiescent and transition to a memory cell phenotype, thereby silencing HIV-1. B The primary mechanism 
for reservoir persistence is due to the clonal expansion of partially activated latently infected cells due to homeostatic proliferation driven by IL-7 
or antigen stimulation. Different viral clones reactivate and expand under different conditions, with some clones being reduced or eliminated due 
to viral cytopathic effects. The result is a gradual simplification of the clonal population as demonstrated by recurring integration site sequences 
(denoted in the figure by different colors for the proviruses)
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At the cellular level, T-cell expansion is driven by either 
antigen-mediated activation of T cells, which induces a 
waxing and waning of the infected cellular clones [40–
42], or homeostatic proliferation [39] driven by cytokines 
such as IL-7, the central regulator of homeostatic T-cell 
proliferation in HIV infection [43, 44]. Ex vivo modeling 
has confirmed that although IL-2 and IL-7 can induce 
homeostatic proliferation, they do not reactivate latent 
proviruses [45]. Since the clonal expansion of CD4+ T 
cells does not induce viral production or enhance the 
clearance of the infected cell [46], it must be the sequen-
tial waves of antigen-induced expansions and contrac-
tions that result in the dynamic changes within the 
reservoir during ART [47].

Molecular measurements of viral clonal expansion
The vast majority of integrated proviral HIV-1 sampled 
from the periphery and tissues of ART-treated virally 
suppressed individuals (~ 90–95%) cannot be a source 
of viral rebound since they are genetically defective 
[48–50]. While some of these defective proviruses can 
still be transcriptionally activated, leading to the expres-
sion of viral antigens with the potential to elicit cytolytic 
immune responses crucial to the clearance of infected 
cells [51–54], they can also have the undesirable effect of 
contributing to HIV-1-associated inflammation [55, 56].

The dominance of defective proviruses has significantly 
hampered the accurate assessment of the rebound-com-
petent reservoir’s heterogeneity and size. Developed two 
and a half decades ago, the quantitative viral outgrowth 
assay (Q-VOA) had long been considered to be a reliable 
measure of the proportion of circulating latently infected 
cells bearing inducible, replication-competent provi-
ruses, estimated to be present at ~ 1/106 CD4+ T cells in 
virally suppressed individuals [25, 27, 57]. With the reali-
zation that the reactivating stimuli used in Q-VOA can 
only reproducibly induce a small fraction (~ 5%) of the 
replication-competent reservoir in a single round [48, 
58–60], it became essential to identify assays that can 
accurately measure the potentially inducible, subset of 
genetically intact proviruses in clinical and retrospective 
longitudinal studies.

The intact proviral DNA assay (IPDA), quadruplex 
quantitative PCR (Q4PCR), and multiplexed droplet digi-
tal PCR are simple PCR methods that are designed to dis-
tinguish between intact and defective proviruses. [33, 61, 
62]. IPDA is a droplet digital PCR-based assay that relies 
on the simultaneous amplification of two subgenomic 
regions (packaging signal and Rev response element) to 
measure the proportion of intact HIV-1 proviruses in 
patient samples regardless of whether they are induc-
ible, latent, or transcriptionally active [33]. Since IPDA 
samples a tiny fraction (2%) of the HIV-1 genome, it may 

incorrectly categorize a significant fraction of proviruses 
as intact, leading to overestimating the intact proviral 
reservoir. IPDA comparison of frequencies of CD4+ T 
cells with intact proviruses in matched peripheral blood 
(PB) and lymph node (LN) samples of ART-treated indi-
viduals surprisingly reveals a slight difference in reser-
voir size between the two compartments (~ 60/106 vs. 
~ 100/106 CD4+ T cells in PB and LN, respectively) [50, 
58]. By contrast, Q4PCR combines a multiplex qPCR for 
the simultaneous amplification of conserved sequences 
in four regions (packaging signal, gag, pol, and env) with 
a final near full-length sequencing step to improve the 
accuracy and sensitivity of detecting intact proviral DNA 
in diverse HIV-1 sequences [61]. IPDA and Q4PCR are 
high throughput assays that are relatively rapid, scalable, 
and much less labor intensive than Q-VOA or next-gen-
eration sequencing for analyzing large numbers of clini-
cal samples. They have also proven helpful in examining 
long-term ART’s impact on the temporal dynamics of the 
HIV-1 reservoir in longitudinally obtained patient sam-
ples from different cohorts.

Regardless of the assay employed, longitudinal stud-
ies of the reservoir have reproducibly demonstrated that 
while the defective proviral DNA is relatively stable with 
minimal decay observed over ten years, intact provi-
ral sequences decay much more rapidly with an average 
estimated half-life of ~ 4.0 to 4.9 years [34, 63–65]. This 
distinctive decay pattern of the intact proviral reservoir 
reflects the selective pressure imparted by stochastic 
reactivation mechanisms on cells harboring intact pro-
viruses, resulting in their preferential loss through viral 
cytopathic effects and antiviral immunity. Despite its rel-
ative instability, the reservoir of intact proviruses remains 
persistent with diminishing complexity over time due to 
its progressive enrichment in expanded clones of CD4+ 
T cells [63, 66]. Even with decades of ART adherence, the 
clonal expansion of cells with intact proviruses will coun-
teract their decay, thereby increasing the reservoir with 
an estimated doubling time of 23 years [67].

A limitation of the IPDA and related assays is that they 
do not provide direct measurements of proviral induc-
ibility. To address this problem, a variety of molecular 
approaches have been developed aimed at measuring 
the proportion of patient-derived cells that harbor tran-
scriptionally or translationally competent HIV-1 DNA 
following ex  vivo induction [68–73]. These include the 
ultrasensitive p24 assay, HIV-1-Flow, HIV-1-FISH-Flow, 
Tat/Rev-induced limited dilution assay (TILDA), and 
envelope detection of in  vitro transcription sequencing 
(EDITS). Although these assays are limited by the inef-
ficiency of proviral reactivation ex  vivo and cytotoxic 
effects, like the proviral DNA assays, they allow for strong 
enrichment of replication-competent genomes. For 
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example, sequence analysis of a library of HIV genomes 
obtained from patients has shown that EDITS, which 
measures the production of multiply spliced envelope 
mRNA in patient-derived cells, can provide a 97% enrich-
ment of viral RNA originating from full-length HIV-1 
genomes [74]. Analogously to the IPDA, this requires 
pairs of primers located before the major 5ʹ splice donor 
and within the env gene that are widely dispersed along 
the genome as well as the expression of Tat and Rev. The 
estimates of the size of the inducible intact proviral res-
ervoir (~ 10–60 HIV-1 RNA+ cells/106 CD4+ T cells) by 
EDITS corresponds closely to the estimates obtained by 
the IPDA assay [73, 74].

These methods also permit the phenotypic analysis of 
inducible HIV genomes persisting in latently infected 
cells. For example, a combination of single-cell sorting 
of p24+ cells (HIV-Flow) followed by near full-length 
HIV-1 genome amplification showed that there was a 
significantly higher proportion of clonally expanded 
genomes in p24+ cells compared to the pool of cells 
harboring non-induced and/or translation-incompetent 
proviruses (79% versus 50%, respectively) [75]. Remark-
ably, these cells were enriched for the adhesion molecule 
VLA-4, a combination of α4 and β1 integrins, involved in 
the trafficking of immune cells to inflammatory sites and 
in T-cell co-stimulation [75].

Since the initial studies of clonal expansion were 
based on total integration site analyses and were there-
fore biased towards the large pool of defective proviral 
genomes, an effort has been made to study the clonal 
expansion of intact proviruses. The most recent work 
confirms that most of the latent reservoir is maintained 
through clonal expansion [76–78], and that the frequency 
of clonally expanded cells increases over time [23]. Simi-
larly, the most authoritative data based on single-cell, 
near full-length sequencing of HIV-1 DNA, coupled with 
proviral integration site analysis, has shown unequivo-
cally that the total population of latently infected cells in 
ART-treated individuals primarily consists of heteroge-
neous subsets of expanded clones [37, 40, 79].

Further evidence for clonal expansion comes from 
analytical treatment interruption (ATI) studies inves-
tigating the genetic makeup of rebounding plasma 
viruses. These have highlighted that viruses derived 
from expanded cellular clones represent most of the 
rebounding reservoir [80–82]. While there appears 
to be little evidence for viral evolutionary clustering 
by anatomical site, primarily based on a comparative 
sequencing analysis of the variable V1–V3 env region 
of proviruses sampled from the different areas, only a 
tiny fraction of the rebounding viruses are genetically 
identical to proviruses from the cellular and anatomi-
cal sites tested during ART treatment [81]. Despite this, 

these ATI studies have also demonstrated no dominant 
anatomical reservoir correlating with HIV-1 rebound, 
with the rebounding virus more likely to originate from 
multiple CD4+ T-cell subsets and tissue compartments. 
Thus, the stochastic reactivation of latent HIV-1 that 
leads to viral emergence can occur in various compart-
ments, with the genetic composition of the rebounding 
viruses lending support to the antigenic and homeo-
static proliferation of a few infected CD4+ T-cell 
clones as being a significant driver of maintaining the 
rebound-competent HIV-1 reservoir.

It is noteworthy that near full-length sequencing anal-
ysis of HIV-1 DNA from PWH on long-term ART has 
uncovered an unequal distribution of genetically intact 
proviruses between the memory T-cell subsets with 
effector memory cells containing the most significant 
proportion of intact proviral HIV-1 [49]. These findings 
confirm the pseudo-steady nature of the memory cell 
HIV-1 reservoir, where the multiple states that define its 
equilibrium are driven by quiescence (activated effector 
to memory), differentiation (central to effector memory), 
and homeostatic proliferation. Since effector-to-memory 
transition and homeostatic proliferation are the major 
forces in creating and maintaining the latent HIV-1 res-
ervoir, it’s been proposed that pharmacological inhibition 
of both processes may substantially diminish the reser-
voir size [66, 83].

Residual viremia
Another potential source of viral persistence is from cells 
resident in anatomical sanctuary sites, such as the B-cell 
follicle of lymphoid tissues, genital tract, and the central 
nervous system that may not be adequately accessed by 
either ART or cytotoxic innate and CD8+ T cells [84–
86]. However, ongoing replication during ART seems 
to be very rare based on molecular assays, including the 
presence of 2-LTR circles in infected cells [87–89], the 
ongoing accumulation of genetic variants [90], and the 
appearance of new viral integration sites [91, 92].

If the virus is not actively replicating during ART treat-
ment, why do many PWH display persistent low-level 
viremia? Surprisingly, the persistent viremia may be due 
to a large expansion of clones of circulating infected cells 
in treated PWH that maintain transcriptionally active 
virus and survive despite host immunity through intrin-
sic proliferative mechanisms [51, 93–95]. Although these 
“repliclones” can be detected using advanced, highly 
sensitive single-cell and sequencing methods for detect-
ing full-length viruses [94], they are rare compared to 
the reservoir of transcriptionally latent but replication-
competent proviruses that are the major source of viral 
rebound during treatment interruption.
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Chromatin organization of proviral HIV‑1 and its epigenetic 
silencing
As described above, the persistent forms of HIV-1 found 
in the reservoir are all integrated into the host cellular 
chromatin, which is a prerequisite to form proviral tem-
plates competent for viral RNA synthesis. During acute 
infection a variety of linear and circularized unintegrated 
DNA is also generated but these typically represent 
only 1 to 10% of the total viral DNA. The unintegrated 
HIV-1 DNA is typically compacted and transcriptionally 
silenced by the host epigenetic SMC5/6 complex [96–99], 
although a few HIV DNAs can escape this restriction and 
support transcription when Vpr stimulates the degrada-
tion of SMC5/6 [100]. Nonetheless, unintegrated DNA 
does not persist in infected T cells for more than a few 
days [101] and therefore does not contribute to the per-
sistent HIV reservoir.

HIV-1 preferentially integrates into a broad but non-
random range of sites in actively transcribing cellular 
genes [102–106]. These sites are specified by the inter-
actions between the viral integrase, capsid and cellular 
cofactors [107, 108]. Binding of integrase with lens epi-
thelium-derived growth factor (LEDGF/p75), a protein 
that binds to the nucleosomes of transcriptionally active 
genes, directs the HIV-1 integrase to transcriptionally 
active genes at the time of infection [109, 110]. In addi-
tion, the cleavage and polyadenylation specificity factor 6 
(CPSF6), a component of the RNA cleavage and polyade-
nylation machinery, mediates the nuclear import of intact 
viral cores [111–113] and the intranuclear trafficking of 
viral pre-integration complexes [114, 115]. Since CPSF6-
capsid interactions allow the virus to bypass peripheral 
heterochromatin and penetrate euchromatic regions in 
the nucleus, it can enhance proviral integration into tran-
scriptionally active genes [115, 116]. HIV-1 targets super-
enhancers (SEs) and speckle-associated domains (SPADs) 
[113, 117] within these highly transcriptionally active 
genomic regions.

Regardless of the chromosomal integration site, pro-
viral HIV-1 is occupied by precisely positioned nucle-
osomes, Nuc-0, Nuc-1, and Nuc-2, which regulate the 
binding of either repressive or stimulatory host transcrip-
tion factors [118] (Fig. 2). The resulting proviruses adopt 
an autonomous chromatin structure that eventually 
makes them susceptible to silencing by host epigenetic 
mechanisms independent of the transcriptional activ-
ity of the surrounding host genes due to insulator ele-
ments. Enhancer-blocking insulator elements are highly 
conserved across all eukaryotes and permit coordinated 
and autonomous gene expression throughout the entire 
genome [119].

The mechanisms that insulate HIV from the host chro-
mosomal control remain incompletely understood but 

the main architectural insulator protein CCCTC-binding 
factor (CTCF) seems to play a central role [117, 120–
122]. Although the HIV LTR does not contain CTCF 
binding sites, genome organization analysis reveals 
dynamic CTCF clusters in cells with active and repressed 
HIV-1 transcription. CTCF-enriched topologically asso-
ciated domain (TAD) boundaries with signatures of 
transcriptionally active chromatin are HIV-1 integration 
determinants in both microglia and CD4+ T cells, and 
CTCF removal impairs viral integration, highlighting the 
importance of host genome organization in HIV-1 infec-
tion [122]. Depletion of CTCF inhibited HIV-1 latency 
establishment in primary CD4+ T cells due to its tran-
scriptional repressor function [123]. Thus, HIV prefer-
entially integrates into regions where it can respond to 
transcriptional signals independently of the surrounding 
host genes.

The positioning of the nucleosomes on the HIV-1 
provirus is regulated during latency. In latently infected 
T cells, the SWI/SNF chromatin remodeling complex 
BAF interacts with Nuc-1 and is required to maintain 
increased Nuc-1 density around the HIV-1 transcription 
start site [124, 125]. By contrast, following T-cell activa-
tion, the closely related PBAF complex replaces BAF and 
facilitates the displacement of Nuc-1, thereby contribut-
ing to the activation of viral transcription [124, 126, 127]. 
A high throughput screen for intracellular small molecule 
inhibitors of BAF has led to the identification of a mac-
rolactam capable of reversing HIV-1 latency in a primary 
cell model and patient-derived CD4+ T cells without 
inducing toxicity or T-cell activation [128].

The HIV-1 LTR itself is a bivalent promoter that char-
acteristically contains both the activating histone H3 Lys4 
tri-methylation (H3K4me3) and repressive H3K27me3 
marks on Nuc-1 situated around the proviral transcrip-
tion start site [129–131]. Thus, the LTR of latent HIV-1 
is in a reversible epigenetically repressed state poised 
for rapid inducible transcription, as is typical for cellular 
bivalent promoters [132, 133]. Transcriptional silencing 
of HIV-1 is strongly associated with the occupation of the 
HIV-1 LTR by transcriptional repressors such as CBF-1, 
YY1, and NF-κB p50 homodimers that recruit histone 
deacetylase (HDAC) and methylation enzymes leading 
to the formation of an array of specific histone modifica-
tions at Nuc-1 [129, 134–143] (Fig. 2).

Two of the best characterized repressive heterochro-
matin marks on proviral HIV-1 are H3K27me2/me3 and 
H3K9me2/3 which are conferred by EZH2, the cata-
lytic component of the polycomb repressive complex 2 
(PRC2), euchromatic histone-lysine N-methyltransferase 
2 (EHMT2, also known as G9a methyltransferase) and 
SUV39H1 (Suppressor of Variegation 3–9 Homolog 1). 
Various combinations of histone lysine methyltransferase 
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enzymes occupy the HIV-1 promoter in cell line models 
of viral latency, but they are all rapidly displaced from 
the promoter upon proviral reactivation [129, 131, 144]. 
The relative contributions of each methyltransferase 
to HIV latency have been difficult to dissect because of 
heterogeneity in the epigenetic regulation of HIV in dif-
ferent Jurkat clones [130]. For example, CRISPR-based 

knockout of EZH2 expression in latently infected Jurkat 
E4 cells was found to also cause the depletion of EHMT2, 
leading to a modest proviral reactivation or potentiation 
of latency reversal by the HDAC inhibitor SAHA [129]. 
By contrast, CRISPR-mediated knockout of EHMT2 was 
selective for EHMT2 and failed to produce any induc-
ible effects on latent proviruses in this Jurkat model. 

Fig. 2  Epigenetic control of HIV-1 transcription initiation. The structure of the HIV-1 LTR and flanking nucleosomes (Nuc-0, Nuc-1, and Nuc-2) 
is shown at the center. In the latent state, the proviral promoter is bound by repressive trans-acting factors, including CBF-1, YY1, and NF-κB 
p50/p50, which direct the recruitment of histone deacetylase enzymes (HDACs). Subsequent occupancy of the promoter by the polycomb 
repressive complex 2 (PRC2) and EHMT2 results in the methylation of the deacetylated histone H3 at Lys27 and Lys9 positions, respectively. PRC2 
also functions to recruit the polycomb repressive complex 1 (PRC1), in part via the binding of CBX4 to H3K27me3. Methylation of the 5’ CpG 
island (5ʹ CpGI) by DNMT1 and DNMT3a promotes the repressive histone methylation status of Nuc-1 by mediating the recruitment of UHRF1 
and the HDAC-containing NuRD complex through MBD2. The SWI/SNF chromatin remodeling complex BAF interacts with Nuc-1 and is required 
to maintain increased Nuc-1 density around the HIV-1 transcription start site. By associating with CBX4, CAF-1, and PML, latent proviruses are likely 
to be situated in liquid–liquid phase-separated (LLPS) nuclear condensates that may concentrate transcriptionally poised genes with repressive 
heterochromatic features. CAF-1 may also play a central role in the initial assembly of nucleosomes at the provirus following integration and DNA 
replication. Typical of bivalent promoters, the HIV-1 LTR is in a reversible epigenetically repressed state poised for rapid inducible transcription. 
Recruitment of histone acetyltransferases, the H3K27me3 demethylase UTX/KMDA, and the PBAF SWI/SNF remodeling complex to the HIV-1 
promoter following the nuclear induction of transcription activators enables the displacement of Nuc-1 and Nuc-2 thereby stimulating viral 
transcription initiation
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Similarly, although SUV39H1 occupies the HIV-1 pro-
moter in tandem with the H3K9me3 reader HP1γ and 
an HDAC1/2 complex [140, 144], its depletion by RNA 
interference, or inhibition of its H3K9me2/3 activity with 
chaetocin, did not effectively reactivate latent HIV-1 pro-
viruses in the Jurkat E4 model [129, 131], suggesting that 
the methylation of H3K9 by either SUV39H1 or EHMT2 
may be insufficient to reverse proviral latency in this 
model. By contrast, in several J-Lat cell clones, partial 
viral reactivation by chaetocin treatment or SUV39H1 
shRNA knockdown was observed [145–147]. Inhibitor-
based studies of the lysine methyltransferase activity of 
EZH2 (by GSK-343 or EPZ-6438), EHMT2 (by UNC-
0638) or SUV39H1 (by chaetocin) in resting CD4+ T 
cells isolated from virally suppressed PWH or in a Th17 
primary cell model of HIV-1 latency have suggested that 

each of these enzymes contribute to establishing and 
maintaining proviral transcriptional silencing in primary 
CD4+ T cells [129, 135, 148]. Given the multiple restric-
tions on HIV transcription in resting memory cells, it is 
not surprising that reversing epigenetic silencing by his-
tone methyltransferase inhibition typically results in only 
modest reactivation, but methyltransferase inhibitors are 
often synergistic with complementary latency-reversing 
agents [21]. Mono-methylation of histone H4 at lysine 20 
(H4K20me1) by SMYD2 has also been shown to contrib-
ute to establishing HIV-1 latency in primary T cells [147].

As illustrated in Table  1, distinct epigenetic mecha-
nisms are known to regulate the transcription of pro-
viral HIV-1 in primary infected T cells [129, 149] and 
brain microglia [122]. In both cell types, viral latency 
appears to be reinforced primarily by creating repressive 

Table 1  Epigenetic factors known to have a repressive or activator role in regulating HIV-1 transcription in T cells and/or microglia

(+) indicates evidence of HIV-1 regulatory function by cell type. For the histone acetyltransferases, (+) is a direct demonstration of function based on ChIP assays 
showing recruitment to the HIV-1 LTR. By contrast, (+?) indicates indirect evidence of possible histone acetyltransferase function based on experimental work 
conducted using HDAC inhibitors. (−) indicates evidence that the factor either does not participate in or has a non-essential HIV-1 regulatory function in that cell type. 
(?) indicates that HIV-1 regulatory function is yet to be demonstrated in that cell type

Epigenetic factor Identified HIV-1 transcriptional regulatory function by cell type

Repressive 
epigenetic 
enzymes

Histone or DNA modification Primary T 
cells

Transformed 
T cells

Primary 
microglia

Transformed 
microglia

Selected references

HDAC1, 2, and 3 Deacetylation of multiple H3 and H4 sites + + + + [135, 139, 416–418]

EZH2 (PRC2) H3K27me3 + + + + [129, 135, 419]

EHMT2 (G9a) H3K9me2 + + + + [129, 419]

SUV39H1 H3K9me3 + + ? + [129, 144, 148, 420]

SMYD2 H4K20me1 + + ? ? [147]

DNMT1; DNMT3a meCpG + + ? ? [130, 157, 163]

LSD1 ? + ? + [304, 421]

KAT5 (Tip60) H4K5Ac, H4K8Ac, H4K12Ac + + ? ? [315]

Activating 
epigenetic 
enzymes

Histone or Tat modification

CBP/p300 H3K27Ac and other H3 and H4 acetylation 
sites; Tat K50Ac and K51Ac

+ + +? +? [134, 135, 418, 422, 423]

GCN5 Primarily H3K14Ac; Tat K50Ac and K51Ac +? +? +? +? [290, 418, 423]

PCAF H3K9Ac, H3K14Ac; H4K8Ac; Tat K28Ac +? +? +? +? [291, 418, 423]

UTX/KMD6A Demethylation of H3K27me3 + + ? ? [130]

Epigenetic 
mediators

Associated partners or complex

Nurr1 CoREST, HDAC1, G9a, EZH2 − − + + [419]

CTIP2 LSD1, HIC1, HMGA1, HDAC1, HDAC2, 
SUV39H1, HP1-γ

− − ? + [140, 420, 421, 424]

MBD2 NuRD + + ? ? [157]

SWI/SNF BAF and PBAF + + ? ? [124–128]

CHAF1a CAF1 + + ? ? [150]

CBX4 PRC1 + + ? ? [153]

PML PML-G9a + + ? ? [154]
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heterochromatin structures at the provirus that may 
influence the intranuclear reorganization of the proviral 
genome into phase-separated condensates that tightly 
regulate local transcription. For instance, in infected 
CD4+ T cells, the enrichment of chromatin assembly fac-
tor 1 (CAF-1) at the LTR of latent proviruses enables this 
histone chaperone to mediate the formation of nuclear 
bodies with liquid–liquid phase separation properties 
that are rich in epigenetic modifiers and histone remod-
eling enzymes essential for establishing and maintain-
ing HIV-1 latency [150] (Fig. 2). CAF-1 may also have a 
central role in the initial assembly of nucleosomes at the 
provirus following integration and DNA replication [151, 
152]. Similarly, CBX4, a component of the Polycomb 
Repressive Complex 1 (PRC1), can mediate the formation 
of phase-separated nuclear bodies while also facilitat-
ing the recruitment of the EZH2 subunit of PRC2 to the 
HIV-1 LTR [153]. Consequently, CBX4 is thought to act 
as a bridge between the repressor complexes PRC1 and 
PRC2 to coordinate the maintenance of HIV-1 latency. 
CBX4 also SUMOylates EZH2, thereby enhancing 
H3K27 methyltransferase activity of EZH2 [153]. Tran-
scriptionally silenced HIV-1 proviruses have also been 
shown to reside near promyelocytic leukemia (PML) 
nuclear bodies where the binding of PML to the latent 
HIV-1 promoter coincides with the presence of repres-
sive heterochromatic marks, most notably the EHMT2-
induced H3K9me2 [154]. Thus, the disruption of CAF-1, 
CBX4, and PML phase-separated nuclear condensates 
that concentrate latent proviruses with repressive hetero-
chromatic features has been proposed to be a potential 
strategy for reversing HIV-1 latency in CD4+ T cells [150, 
153–155].

In addition to histone methylation, hypermethylation 
of proviral DNA mainly detected at two CpG islands 
flanking the transcription start site has been associated 
with HIV-1 silencing in both latently infected Jurkat T 
cells and primary CD4+ T cells [156, 157]. Proviral DNA 
methylation by DNMT1 and DNMT3a is thought to 
mediate the recruitment of the NuRD complex via the 
methyl-CpG binding domain protein MBD2 [157]. How-
ever, these findings are inconsistent with observations 
made in latently infected CD4+ T cells from ART-treated 
virally suppressed PWH where proviral DNA methyla-
tion was very low or absent [158].

The ability of epigenetic factors to silence HIV-1, sug-
gested that it might be possible to exploit these mecha-
nisms to permanently silence HIV-1—the “Block and 
Lock” strategy for an HIV cure [159]. In a primary T cell 
model of HIV-1 latency, ATACseq studies have shown 
that chromatin accessibility of the proviral genome is 
significantly reduced when the provirus becomes latent, 
signifying the acquisition of physical and epigenetic 

barriers to viral gene expression [123]. Interestingly, 
while the genomic site of proviral integration influences 
the response to latency-reversing agents [160], integra-
tion sites of intact proviruses from elite controllers are 
observed to be located further away from the accessible 
chromatin and tend to be more enriched in repressive 
chromatin marks [161]. These observations have sug-
gested that the heterochromatic nature of proviral res-
ervoirs in elite controllers may also contribute to their 
ability to control viral replication spontaneously [161].

There have been some promising reports that an analog 
of cortistatin A, dCA, can not only block HIV Tat activ-
ity but also induce epigenetic modifications that lead to 
long-term silencing of HIV proviruses [162]. However, an 
attempt to permanently silence latent HIV-1 in infected 
primary Th17 cells by pharmacological inhibition of 
the prominent cellular H3K27me3 demethylase, UTX/
KMDA, was unsuccessful [130]. Although UTX/KMDA 
inhibition or knockdown led to an enhancement in 
H3K27me3 levels and stimulated CpG DNA methylation 
by DNMT1 on both the proviral LTR and its gene coding 
region in ex vivo infected primary T cells and suppressed 
the reactivation of latent HIV-1 in memory CD4+ T cells 
isolated from ART-treated PWH, withdrawal of the UTX 
inhibitor also led to a rapid DNA-demethylation of the 
HIV-1 LTR accompanied by a reversal of transcriptional 
suppression [130]. CpG DNA methylation at the HIV-1 
promoter is also confirmed to promote the repressive 
histone methylation status of Nuc-1 by facilitating the 
recruitment of the integrator factor UHRF1, which coor-
dinates the chromatin assembly of DNMT1 and G9a/
EHMT2 enzyme complexes [163]. Thus, the induction 
of restrictive epigenetic structures through cooperative 
histone and DNA methylation processes is necessary for 
HIV silencing but appears insufficient to permanently 
block HIV-1 proviral transcription.

Initiation of HIV transcription
The emergence of HIV-1 from latency requires the trans-
activation of epigenetically silenced proviruses by host 
transcription factors (Table  2) and the viral factor Tat, 
which delivers the host transcription elongation factor 
P-TEFb. Despite the specialized transactivation mecha-
nism involving Tat, the HIV-1 promoter possesses a 
complement of cis-acting elements found in many cellu-
lar promoters. The viral core promoter of HIV-1 subtype 
B is highly conserved genetically [164] and comprises 
three tandem Sp1 binding sites, a TATA box, and an ini-
tiator element at the transcription start site (Fig. 2). The 
binding of TFIID to core promoter DNA nucleates the 
recruitment of the rest of the transcription preinitiation 
complex and occurs independently of Tat [165].
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Latent HIV-1 proviruses constitutively carry the Sp1 
transcription initiation factor but cannot recruit RNA 
polymerase II (RNAP II) because of the epigenetic 
restrictions imposed on the provirus [22, 166]. Antigen 

stimulation of memory T cells activates the TCR and ini-
tiates a cascade of signaling pathways leading to the rapid 
nuclear induction and assembly of host transcription ini-
tiation factors such as NFAT, NF-κB, AP-1, STAT5, and 

Table 2  Transcription factors or events known to regulate HIV-1 transcription in T cells and/or microglia

(+) indicates evidence of HIV-1 regulatory function by cell type. (−) indicates evidence that the factor either does not participate in or has a non-essential HIV-1 
regulatory function in that cell type. (?) indicates that the HIV-1 regulatory function is yet to be demonstrated in that cell type. Also shown is a classification by cell 
type of the known or unknown expression profiles of P-TEFb subunits, 7SK snRNP and the SEC component ELL2

Transcription factor or stage Identified HIV-1 transriptional regulatory function by cell type

DNA-binding repressors Primary T cells Transformed T cells Primary 
microglia

Transformed microglia Selected references

CBF-1 + + ? − [135]

ESR1 + + ? − [72]

NF-κB p50/p50 ? + ? ? [142, 425]

Sp1 ? + ? + [426, 427]

AP-1 (c-Fos/c-Jun) + − ? ? [428, 429]

c-Myc ? + ? ? [427]

YY1/LSF ? + ? ? [138, 139, 430]

TRIM28 ? + ? ? [330, 331]

GR ? − ? + [431]

CTIP2 ? ? ? + [138]

Activating initiation factors

 NFAT + − − − [21, 22, 167, 174, 432]

 NF-κB p65/p50 + + + + [21, 22, 167, 168, 174, 
432]

 NF-κB p52/p100 + + ? ? [390, 391]

 AP-1 (c-Fos/c-Jun) ? + ? ? [174, 429]

 Sp1 ? + ? + [433, 434]

 STAT5 + ? ? ? [187]

 IRF3 − − + + [435]

 RBF-2 ? + ? ? [169, 324]

 TRIM28 (KAP1) ? + ? ? [325]

 COUP-TF − − ? + [433, 436]

 NF-IL6 (C/EBPβ) − + ? + [426, 437]

Transcription elongation

 Promoter-proximal 
pausing

+ + ? ? [262, 313]

 P-TEFb requirement + + ? + [262, 371, 438]

 Cyclin T1 expression Inducible Constitutive ? Constitutive [364, 365, 371, 438]

 CDK9 expression Constitutive Constitutive ? Constitutive [364, 365, 371, 438]

 7SK snRNP assembly Inducible Constitutive ? Constitutive [240, 262, 364, 438]

 SEC requirement ? + ? ? [439, 440]

 ELL2 expression Inducible Inducible ? ? [240, 440]

P-TEFb or SEC recruitment factors

 HIV Tat requirement + + ? + [214–216, 441]

 TRIM28 + + ? + [313, 325, 442]

 HSF-1 + + ? ? [323, 328]

 HMGA1 ? ? ? + [438]

 BRD4 + + ? ? [272, 315, 316]
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the Ras-responsive binding factor-2 (RBF-2). These fac-
tors bind directly to well-defined cognate cis-acting ele-
ments at the proviral promoter [167–175] (Fig. 2).

The duplicated cis-acting NF-κB elements at the 
proviral HIV-1 promoter overlap with the elements 

recognized by NFAT, implying that these transcription 
initiation factors can only act in a mutually exclusive 
manner. The binding of NF-κB to the promoter is insuffi-
cient to induce proviral gene expression but also requires 
a cooperative interaction with constitutively bound Sp1 
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Fig. 3  Stimulation of efficient HIV-1 transcription elongation through Tat-dependent P-TEFb recruitment and remodeling of the chromatin barrier. 
The current understanding of the regulation of processive HIV-1 transcription, as portrayed here, is based mainly on studies conducted using 
cell line models. A Epigenetic repressive features at the proviral promoter prevent the recruitment of RNA polymerase II (RNAP II) and assembly 
of the preinitiation complex, thereby restricting the expression of Tat. Latent proviruses also characteristically possess elevated acetylated histone 
H4 (AcH4) levels that permit their occupancy by the short isoform of BRD4, which reinforces viral latency through direct recruitment of BAF SWI/
SNF complexes. Without Tat expression, an accumulation of inefficiently transcribing promoter-proximally paused RNAP II complexes due to NELF 
and DSIF activity may lead to abortive transcription. B Chromatin remodeling and efficient assembly of preinitiation complexes may initially 
allow for the onset of Tat-independent transcription elongation likely occurring through the recruitment of P-TEFb by NF-κB, BRD4, TRIM28, 
or HSF1. Synthesized Tat efficiently trans-activates HIV-1 transcription elongation by outcompeting BRD4 for P-TEFb binding and recruiting P-TEFb 
with the super elongation complex (SEC) to the TAR hairpin. P-TEFb eventually phosphorylates the RNAP II C-terminal domain (CTD), its linker 
region between the polymerase core and CTD, the SPT5 subunit of DSIF, and the NELF-E subunit. Phosphorylated DSIF is transformed into a positive 
elongation factor, while NELF-E phosphorylation leads to the dissociation of the NELF complex from RNAP II. The phosphorylated RNAP II CTD 
and linker provide a scaffold to anchor the histone chaperone SPT6, which, along with FACT, is essential in enabling the elongating machinery 
to transcribe through nucleosomal barriers. These RNAP II phospho-modifications may also anchor elongation factors, co-transcriptional processing 
complexes, and chromatin-modifying enzymes
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[176]. In the context of TCR signaling, inhibitor experi-
ments in primary cell latency models have suggested that 
NFAT is the dominant transcription initiation factor [21, 
22]. A plausible hypothesis is that NFAT and NF-κB are 
sequentially recruited to the proviral promoter, with the 
former being essential for mediating the earlier phase of 
transcription. Similarly, the recruitment of AP-1 to the 
proviral promoter is also likely enhanced by its physical 
interaction with NFAT or NF-κB [174, 177–180].

These combinations of transcription initiation fac-
tors act to kick-start proviral transcription by recruit-
ing histone acyltransferases and chromatin remodeling 
enzymes whose activity on the adjacent Nuc-1 loosens 
up chromatin sufficiently enough to permit the recruit-
ment of RNAP II and the formation of the preinitia-
tion complex (Fig. 3). Specifically, NFAT or NF-κB can 
enhance RNAP II recruitment by directly anchoring 
transcriptional co-activator proteins such as CBP and 
p300 [181–183]. These structurally similar acetyl-
transferases mediate histone H3 lysine 27 acetylation 
(H3K27Ac). This epigenetic mark has been shown to 
correlate with the transition of RNAP II from initiation 
to elongation [184, 185]. Phosphorylation and homodi-
merization of STAT5 following the activation of JAK-
STAT signaling also enables STAT5 to translocate into 
the nucleus and bind p300/CBP [185, 186]. Counteract-
ing the SUMOylation of IL-2-induced phospho-STAT5 
with benzotriazoles has been shown to enhance the 
occupancy of STAT5 at the HIV-1 LTR and is associ-
ated with the reactivation of latent HIV-1 in primary 
CD4+ T cells [187].

As a critical component of the preinitiation complex, 
TFIIH utilizes its DNA helicase activity to facilitate the 
transitional loading of RNAP II onto a melted short 
stretch of single-stranded DNA [188]. The CDK7 pro-
tein kinase subunit of TFIIH then phosphorylates the 
heptad repeats Y-S-P-T-S-P-S of the C-terminal domain 
(CTD) of RNAP II at Ser5, thereby causing the polymer-
ase to dissociate from Mediator and facilitate its pro-
moter escape [189]. The 26-subunit Mediator complex 
includes interchangeable CDK8 and CDK19 kinases, 
which can have both stimulatory and repressive effects 
depending on the gene context [190]. In a recent study, 
inhibition of CDK8/CDK19 kinase activity was found to 
suppress proviral reactivation in a Jurkat latency model 
and ex vivo-treated primary CD4+ T cells derived from 
virally suppressed PWH [191], but siRNA knockdown of 
both CDK8 and CDK19 in Jurkat cells failed to produce 
an effect on HIV-1 transcription, perhaps because this 
disrupted the integrity of the Mediator complex [192]. 
The Ser5-phosphorylated RNAP II CTD is also essential 
for recruiting the 5ʹ mRNA capping enzymes as the poly-
merase initiates transcription elongation [193].

The unique organization of the HIV-1 LTR and the 
interplay between the multiple transcription initiation 
factors and TFIID results in DNA bending that enhances 
efficient transcription initiation yet results in promoter-
proximal pausing near the end of the TAR RNA hair-
pin found at the 5ʹ end of all HIV transcripts [194, 195]. 
Promoter-proximal pausing is reinforced by the negative 
elongation factors NELF and DSIF [195–197] and the 
stabilization of nucleosomal structures adjacent to the 
pause sites [198]. A cryoEM structure of RNAP II bound 
to DSIF and NELF on a DNA-RNA scaffold of the HIV-1 
proximal pause site showed that pausing by NELF is 
allosteric [199]. Because of overlapping interaction sites, 
NELF and DSIF can only stabilize pausing after initiation 
factors are released: DSIF binding is incompatible with 
the binding of TFIIB and TFIIE and NELF-A is incom-
patible with TFIIF binding [199].

Stimulation of promoter clearance by Tat and P‑TEFb
The viral transactivator Tat and its cofactors resolve 
promoter-proximal pausing and enhance elongation 
[200, 201]. The form of P-TEFb that Tat recruits to pro-
viral HIV-1 is a heterodimer complex of a kinase subunit 
CDK9 and its regulatory partner, cyclin T1 (CycT1) [202, 
203]. Tat facilitates the recruitment of P-TEFb by bind-
ing directly to the nascent TAR hairpin at a U-rich bulge 
while CycT1 binds cooperatively to the apical loop [204–
207]. Tat and P-TEFb also form a larger assembly with 
the super elongation complex (SEC) before cooperatively 
associating with the nascently synthesized TAR hairpin 
[208, 209] (Fig. 3).

TAR RNA binding places the catalytic CDK9 subunit of 
P-TEFb adjacent to the negative elongation factors on the 
paused polymerase complex, allowing the kinase to phos-
phorylate the E subunit of the repressive NELF complex 
at multiple serine residues, which causes NELF to disso-
ciate from both TAR and RNAP II [196, 210]. In addition, 
CDK9 phosphorylates the C-terminal repeats of the Spt5 
subunit of DSIF, which have high sequence homology to 
the RNAP II CTD sequences [211, 212]. Recent Cryo-EM 
structures of the paused and active elongation complexes 
have shown that in addition to inducing the release of 
NELF from RNAP II, P-TEFb kinase activity also causes 
a conformational change in DSIF that explains its trans-
formation into a positive elongation factor [199, 213]. 
Consequently, the overall effect of the phospho-modifica-
tions by P-TEFb at the provirus is to remove the blocks to 
elongation imposed by NELF and DSIF and to stimulate 
efficient elongation and co-transcriptional processing of 
proviral transcripts.

Seminal studies carried out in transformed cell models 
showed that in the absence of Tat, RNAP II transcrib-
ing complexes on proviral HIV-1 are weakly processive. 
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Under these conditions, short abortive transcripts of ~ 60 
nucleotides accumulate in the cells due to the premature 
termination of transcription and release of RNAP II or an 
accumulation of the polymerase in a promoter-proximal 
region adjacent to the 59-nucleotide TAR RNA coding 
sequence [214–216]. Subsequently, short, prematurely 
terminated HIV-1 transcripts have also been detected in 
PBMCs obtained from both ART-treated and untreated 
patients [95, 217, 218], although it’s unclear what fraction 
of these transcripts are generated from defective provi-
ruses. Detection of abortive HIV-1 transcripts in the 
absence of Tat suggests that, just like a subset of protein-
coding cellular genes that include immediate early genes 
(IEGs), promoter-proximally paused RNAP II on proviral 
HIV-1 may be subjected to premature transcription ter-
mination by Integrator, a multisubunit protein complex 
that possesses endonuclease and phosphatase activities 
that are functionally analogous to those of the cleavage 
and polyadenylation machinery [219]. The core of Inte-
grator binds RNAP II, DSIF, and NELF in the paused 
elongation complex that positions its endonuclease sub-
unit near the RNAP II RNA exit channel to cleave nas-
cent RNA [220, 221]. In addition, Integrator is thought 
to employ its protein phosphatase 2A (PP2A) subunit 
to remove the phospho-modifications at the C-terminal 
regions of both RNAP II and DSIF conferred by P-TEFb, 
thereby preventing the transition of paused RNAP II to 
productive elongation [222–224]. Whether Integrator 
also contributes to the early stages of elongation in the 
presence of Tat has yet to be investigated. Despite its abil-
ity to counteract pause release by P-TEFb, Integrator-
PP2A might also be involved in mediating the transition 
to productive elongation by dephosphorylating pSer5 
modifications at the RNAP II CTD heptad repeats, allow-
ing enhanced CTD modification at Ser2 by Tat-activated 
P-TEFb. Therefore, an attractive hypothesis for the role 
of Integrator in regulating proviral HIV-1 transcription, 
consistent with its recognized role in facilitating the 
transcription elongation of signal-dependent genes such 
as IEGs [221, 225, 226], is that its dual catalytic activi-
ties enforce a dynamic turnover of RNAP II at HIV-1 
promoter-proximal pause sites that is repressive but, 
depending on the availability of Tat and P-TEFb, can 
facilitate the formation of elongation-competent RNAP 
II complexes capable of rapidly clearing the promoter 
region.

Additional elongation factors also modulate RNAP 
II promoter-proximal pausing, which may explain why 
RNAP II always occupies the promoter-proximal pause 
site during active transcription [195]. Dissociation of 
NELF from RNAP II exposes a region required for 

binding polymerase-associated factor 1 complex (PAF1c), 
an elongation factor that enhances RNAP II elonga-
tion rate and processivity [213, 227–229]. Paradoxi-
cally, PAF1c also has a demonstrated role in maintaining 
RNAP II in a paused state at promoter-proximal regions 
and was identified in a siRNA high-throughput screen 
as a potent restriction factor for acute HIV-1 infection 
[230–232]. A PAF1c inhibitor can disrupt PAF1c chro-
matin occupancy, thereby inducing global release of pro-
moter-proximally paused RNAP II into gene bodies and 
facilitating the reactivation of latent HIV-1 in both cell 
line models and patient-derived cells [233].

Enhancement of Tat:P‑TEFb activity by the superelongation 
complex
P-TEFb is an integral component of the much larger 
superelongation complex (SEC), which contains various 
combinations of 4 subunits (ELL or ELL2; EAF1; ENL or 
AF9; and AFF1 or AFF4) [208, 209, 234]. The SEC helps 
to stabilize the Tat:P-TEFb complex, promote promoter 
clearance, and enhance polymerase processivity. The 
interactions between Tat:P-TEFb and the SEC are medi-
ated by AFF4 or its structural homolog AFF1, which are 
both elongated molecular scaffolds [235]. Crystal struc-
tures of the CDK9–CycT1–AFF4–Tat–TAR protein-
RNA complex demonstrate the tight interface between 
P-TEFb, Tat, and TAR RNA [236]. The structure also 
revealed how stabilization of the complex by AFF4 per-
mitted the TAR RNA central loop to engage the CycT1 
TAR recognition motif (TRM) and compact core of Tat, 
while the extended Tat arginine-rich RNA binding motif 
bound to the TAR RNA major groove [236]. Additional 
crystal structures of the C-terminal homology domain 
(CHD) that is conserved among AF4/FMR2 family pro-
teins, including AFF1, AFF2, AFF3, and AFF4, but is 
separated from the intrinsically disordered N-terminal 
region that interacts with other super-elongation com-
plex subunits, showed that it is a substrate for CDK9, and 
helps trigger the release of RNAP II from the promoter-
proximal pause sites [237].

The ELL or ELL2 subunits of the SEC enhance pro-
cessive elongation by preventing backtracking and tran-
scriptional arrest after pause sites [238, 239]. In resting 
memory T cells, ELL2 is almost absent [240], and even 
after TCR activation, ELL2 is restricted to rate-limit-
ing levels due to rapid protein turnover induced by the 
polyubiquitination-proteasomal pathway [241]. The Tat-
AFF4 complex helps to prevent the degradation of ELL2, 
leading to higher levels of SEC associated with P-TEFb 
[208, 241]. Finally, the YEATS domain of the ENL or AF9 
subunit of the SEC creates additional contacts with the 
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paused RNAP II via an interaction with the PAF1 subunit 
of PAFc [235], further enhancing RNAP II processivity 
[213, 227–229].

Chromatin modification during elongation by Tat 
and P‑TEFb
In addition to targeting NELF and DSIF, CDK9 also 
extensively phosphorylates the CTD of Rbp1, the large 
subunit of RNAP II, mainly at the Ser2 residues of its 52 
heptad repeats [242–244]. The transient phosphorylation 
of Ser2 and Ser5 of the heptad repeats creates a molec-
ular recognition code of charged residues, informally 
termed the CTD code [245, 246]. The phosphorylated 
CTD permits the recruitment of multiple factors, includ-
ing splicing factors, chromatin modifying factors and 
additional elongation factors, required for efficient HIV 
transcription and post-transcriptional events. Dynamic 
changes in CTD phosphorylation are reflected in a gra-
dient of Ser2 and Ser5 phosphorylation along the pro-
virus with pSer5 enriched near the promoter and pSer2 
enriched near the 3’LTR [195]. Removal of TFIIH pSer5 
marks from the RNAP II CTD by the Ssu72 CTD pSer5-
specific phosphatase has been shown to stimulate Tat 
transactivation during the early phases of transcriptional 
elongation [247]. Since P-TEFb cannot phosphorylate 
RNAP II CTD repeats carrying pSer5, dephosphorylation 
of Ser5 enhances CTD phosphorylation at the Ser2 and 
Ser7 residues [248].

The feedback communication between the CTD and 
histone modifications helps coordinate chromatin states 
with RNAP II-mediated transcription [249]. For exam-
ple, by phosphorylating the linker region between the 
polymerase core and the CTD, P-TEFb also promotes 
the binding of the histone chaperone SPT6 to RNAP II 
at this region [213, 250]. SPT6 interacts with PAF1c and 
helps stabilize its presence on chromatin [251]. This 
recent finding aligns with the implicated role of P-TEFb 
activity in remodeling the chromatin barriers encoun-
tered on gene bodies by the elongation machinery during 
transcription.

Ser2 phosphorylation of the RNAP II CTD is also a 
prerequisite for the monoubiquitination of histone H2B 
(H2Bub1) by the E3 ubiquitin ligase complex RNF20/40, 
a histone modification that is associated with active tran-
scription since it is found to be present on the transcribed 
regions of numerous active class II genes [252]. By con-
trast, the initial recruitment of P-TEFb to cellular genes 
requires the deubiquitination of H2B and phosphoryla-
tion of histone H3 at Ser10 (H3pS10) [253]. RNF20/40 
elicits its monoubiquitination activity on H2B by binding 
PAF1c [254]. Subsequently, H2Bub1 stimulates efficient 
elongation by inducing trimethylation of histone H3 at 
Lys4 (H3K4me3) and methylation of Lys79 (H3K79me2/

me3) by hSet1 and Dot1/Dot1L, respectively [254–257]. 
H2Bub1 also enhances the histone chaperone remodeling 
activity of FACT [258–260]. Disruption of chromatin 
structure by FACT via the displacement of the histone 
H2A/H2B dimer from core nucleosomes present in gene 
bodies is essential for enabling RNAP II to transcribe 
through nucleosomal barriers efficiently [163–166]. This 
interplay between H3pS10-induced P-TEFb activity on 
RNAP II, H2Bub1, H3K4me3, H3K79me2/me3, and 
chromatin remodeling by the histone chaperones SPT6 
and FACT is likely to affect the positioning of Nuc1 and 
Nuc2 on the HIV provirus and further help stimulate 
processive HIV-1 transcription.

Tat‑mediated delivery of P‑TEFb to proviral HIV‑1
In actively dividing cells, including transformed T cells, 
at least half of the P-TEFb complexes are reversibly asso-
ciated with 7SK snRNP in the nucleus [261, 262] (Fig. 4). 
7SK snRNP comprises a molecule of the 331-nucleo-
tide long non-coding 7SK snRNA that is protected at 
its 5’ and 3’ ends from exoribonucleolytic degradation 
by the capping enzyme MEPCE and the La-related pro-
tein LARP7, respectively [263–266]. After RNA capping, 
MEPCE remains bound to the 5ʹ monomethyl phosphate 
cap and forms direct interactions with LARP7, resulting 
in a closed loop conformation of the RNA that stabilizes 
the ‘core’ 7SK snRNP structure [266–268]. In this con-
formation, the three-dimensional folding of 7SK snRNA 
establishes a molecular scaffold that cooperatively binds 
two molecules of P-TEFb to a homodimer of the pro-
teins HEXIM1 or HEXIM2, which are thought to inhibit 
CDK9 kinase activity by directly occluding the enzyme’s 
active site [269, 270]. Bulk RNA-seq transcriptome analy-
sis of various primary CD4+ T cell subsets showed that 
HEXIM1 mRNA is expressed at approximately four and 
sevenfold higher levels than HEXIM2 in unstimulated 
and activated cells, respectively, suggesting that HEXIM1 
is the major isoform in CD4+ T cells and thus the more 
likely regulatory partner for P-TEFb within 7SK snRNP 
[240].

P-TEFb is recruited to most cellular genes via BRD4, 
a bromodomain-containing protein that binds to acety-
lated histones and directs P-TEFb to activated cellular 
genes [271, 272]. To be able to recruit P-TEFb to proviral 
HIV-1 effectively, Tat must compete with BRD4, which 
uses its two tandem N-terminal bromodomains to bind 
acetylated histones H3 and H4 (AcH3 and AcH4) and 
contains a well-defined C-terminal P-TEFb-interacting 
domain (PID) sufficiently capable of dissociating P-TEFb 
from 7SK snRNP through as of yet unclear mechanisms 
[271, 273, 274]. The BRD4 PID can also inhibit Tat-
dependent HIV-1 transcription, most likely by acting as a 
decoy for P-TEFb binding [275].
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Like BRD4, Tat has evolved the molecular ability to 
physically engage with 7SK snRNP and remove P-TEFb 
from the complex [276]. However, unlike BRD4, Tat is 
known to form well-defined interactions with the 7SK 

snRNA scaffold [277, 278]. Several models have been pro-
posed to explain the process of Tat-dependent extraction 
of P-TEFb, including (a) assembly of Tat and 7SK snRNP 
at the HIV-1 promoter and competitive displacement of 
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Fig. 4  Biogenesis of P-TEFb in primary T cells and proposed mechanism for the recruitment of Tat:P-TEFb to the HIV-1 provirus. A P-TEFb 
is expressed in resting memory CD4+ T cells at vanishingly low levels due to posttranscriptional mechanisms that limit CycT1 expression. This causes 
the CDK9 subunit to be sequestered in the cytoplasm by the kinase-specific chaperone complex Hsp90/Cdc37. TCR co-stimulation induces CycT1 
protein synthesis, leading to the heterodimeric assembly of P-TEFb that is stabilized by CDK9 phosphorylation at Thr186. Upon assembly, P-TEFb 
then enters the nucleus where it is incorporated into the 7SK snRNP complex. BRD4 and Tat can physically engage with 7SK snRNP but compete 
with one another to dissociate P-TEFb from the complex. The signal-dependent modification pSer175 CDK9 preferentially enhances the binding 
of Tat to P-TEFb. Ser175 on the activation loop of CDK9 is an essential contact point for BRD4; mutation of Ser175 to a phosphomimetic residue 
or an alanine produces severe defects in the association of P-TEFb with BRD4. B Microscopic imaging of the assembly of P-TEFb in memory CD4+ 
T cells following TCR activation. Cells were stimulated or not with soluble anti-CD3 and anti-CD28 antibodies. After immunostaining, images 
were captured by deconvolution microscopy at 60x. Scale bar: 10 μm. CDK9 is sequestered in the cytoplasm in the unstimulated cells, and CycT1 
is present in very low amounts. After stimulation, CDK9 and synthesized CycT1 are present in the nucleus as a complex (P-TEFb), presumably 
sequestered by 7SK snRNP. C Combined immunofluorescence and RNA FISH detection of CycT1 and 7SK snRNA in memory CD4+ T cells. Cells 
were stimulated or not with anti-CD3 and anti-CD28 Dynabeads at a 1:1 bead-to-cell ratio. Images were captured by deconvolution microscopy 
at 100x. Scale bar: 1 μm. Cellular stimulation results in a doughnut-shaped redistribution of 7SK snRNA within the nucleus that tightly colocalizes 
with induced CycT1
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Tat:P-TEFb from 7SK snRNP by nascent TAR RNA [279, 
280]; (b) competitive dislodgement of HEXIM1 from 7SK 
snRNA via Tat interactions with the stem region of the 5ʹ 
hairpin leading to the formation of a Tat:7SK snRNA:P-
TEFb intermediate that mediates exchange of Tat:P-TEFb 
to the SEC (Fig. 4) [277, 278, 281–283]; (c) engagement 
of promoter-bound 7SK snRNP by PPM1G to catalyze 
Thr186 dephosphorylation of CDK9 thereby facilitating 
the displacement of P-TEFb and its exchange onto Tat 
[284]; and (d) recruitment by Tat of a ubiquitin ligase 
UBE2O to 7SK snRNP that ubiquitinates HEXIM1 lead-
ing to 7SK snRNP disruption, cytoplasmic sequestration 
of HEXIM1 and enhancement of the fraction of P-TEFb 
that is associated with Tat [285].

Observations from recent biochemical and struc-
tural studies demonstrating that Tat and HEXIM1 must 
interact with 7SK snRNA in a mutually exclusive man-
ner suggest that there may be the formation of a Tat:7SK 
snRNA:P-TEFb intermediate. The recognition of the 5’ 
hairpin of 7SK by the arginine-rich RNA binding domain 
(RBD) of Tat is enabled by Arg52, which remodels a 
pseudo arginine sandwich motif critical for HEXIM1 
binding into a classical arginine sandwich motif (ASM), 
leading to the displacement of HEXIM1 [277, 278]. 
Analogously, to efficiently interact with TAR RNA, Tat 
also utilizes Arg52 to remodel the U-rich bulge near the 
top of the stem of the TAR hairpin into an ASM whose 
structure is identical to that of the remodeled ASM in 
7SK [206, 278]. Moreover, NMR structural analysis of 
the interaction of the HEXIM1 RNA binding motif with 
the apical stem portion of the 7SK 5’ hairpin reveals that 
in addition to exhibiting a three to fourfold lower bind-
ing affinity compared to Tat, HEXIM1 induces a local 
destabilization of this region that Tat further exploits to 
bind 7SK more efficiently [277]. While significant strides 
have been made in delineating the mechanism of Tat:7SK 
assembly, how Tat:P-TEFb is eventually dislodged from 
7SK and directed to TAR RNA anchored at the proviral 
locus is less well understood. Whether this exchange pro-
cess in vivo requires the mediation of TAR, the presence 
of the SEC scaffolding components AFF1/AFF4, is facili-
tated by specific PTM switches, or can be sufficiently 
accomplished by Tat requires unequivocal clarity con-
sidering that it is a crucial intermediary step in proviral 
HIV-1 gene regulation.

Tat interactions with chromatin‑modifying enzymes
More than two decades ago, a number of groups docu-
mented that Tat mediates the recruitment of the his-
tone acetyltransferases (HATs) p300/CBP, hGCN5, and 
PCAF as well as the SWI/SNF remodeling complex to 
the proviral LTR [127, 286–292]. The HATs contribute 
indirectly to Tat’s transactivator function by changing 

the chromatin environment and directly by modifying 
Tat. In addition to targeting Nuc-1, HATs directly mod-
ify Tat on Lys50 and Lys51, which are situated within 
the Arginine-rich TAR RNA binding motif (ARM) [290, 
293, 294]. Acetylation of the ARM region dissociates Tat 
from TAR while simultaneously reinforcing its interac-
tion with chromatin-modifying transcriptional co-acti-
vators (both HATs and SWI/SNF subunits) by providing 
acetyl binding sites for their bromodomains [291, 295]. 
Consequently, these ARM acetyl modifications provide 
a bridge to interact with RNAP II and facilitate a TAR-
independent co-transcriptional remodeling of the chro-
matinized proviral template during the elongation phase 
of transcription [296, 297]. By contrast, PCAF binding to 
acetylated Lys50 of Tat allows it to acetylate Lys28 situ-
ated within the cysteine-rich region of Tat’s activation 
domain, leading to the abrogation of Tat:PCAF interac-
tions and enhancement of the association of Tat with 
P-TEFb that stabilizes the Tat:P-TEFb:TAR ternary com-
plex [293, 295, 298, 299].

Tat post-translational modifications also mediate other 
phases of transcription. At the end of the transcription 
cycle, SIRT1 is thought to bind and deacetylate Tat at 
Lys50, thereby recycling Tat for subsequent rounds of 
viral transcription [300]. Following the deacetylation of 
Tat at the ARM region, its monomethylation at Lys51 by 
Set7/9 bound to TAR has been reported to enhance Tat-
dependent HIV-1 transcription by restoring Tat interac-
tions with TAR necessary for the recruitment of P-TEFb 
[301]. A recent study has also identified the lysine meth-
yltransferase SMYD5 as an additional co-activator of 
HIV-1 transcription in cell line models [302]. SMYD5 can 
be recruited to cellular genes by RNAP II and catalyzes 
the trimethylation of histone H3 at Lys 36 (H3K36me3), 
a modification associated with actively transcribing genes 
[303]. SMYD5 is also capable of modifying Tat and bind-
ing TAR in in  vitro assays [302]. Although the interac-
tions with Tat were found to promote the intracellular 
expression of SMYD5 [302], the site of Tat methylation 
by SMYD5, as well as its functional implication in the 
epigenetic regulation of HIV-1 transcription, remain to 
be determined. Finally, demethylation of Lys51 by LSD1/
CoREST allows for the re-acetylation of the ARM, which 
triggers re-entry into the TAR-independent phase of 
transcription elongation [304].

How all the complex interactions between Tat, histone 
modifying enzymes, and the super elongation complex 
(SEC) are coordinated at TAR to affect the transactiva-
tion of HIV-1 remains unclear. It will be worthwhile to 
generate epitope-specific antibodies directed towards the 
identified post-translational modifications of the ARM 
and activation domain regions of Tat to examine the 
kinetics of their acquisition and loss of the major PTMs 
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and their functional relevance in primary cell latency 
models. Recently, the efficient reversal of HIV-1 latency 
in CD4+ T cells from PWH due to the ectopic expression 
of Tat introduced by transduction with lipid nanoparti-
cles containing Tat mRNA has been reported [305]. This 
activity might be due to the multifunctional transactiva-
tor roles of Tat in recruiting HATs to the proviral pro-
moter and coordinating the delivery of P-TEFb and SEC 
to the promoter-proximally paused RNAP II at the TAR 
hairpin. However, since Tat can also stimulate TNF-α 
IL-1β and other proinflammatory cytokine production in 
T-cells and myeloid cells [306–308], some of the latency-
reversing effects of Tat might also be due to indirect 
effects of the cytokines leading to enhanced T-cell activa-
tion and P-TEFb production.

Stochastic transcription from the viral LTR
One important consequence of the promoter-proximal 
pausing at the HIV-1 LTR is that HIV transcription at 
the level of an individual provirus occurs in rapid bursts 
[309, 310]. The stochastic switching of the viral promoter 
between ON and OFF states is caused by random bind-
ing dynamics of the core transcription factors TBP, Sp1, 
and NF-κB, which can lead to intermittent clearance of 
the paused RNAP II complexes [311]. Elegant single-
molecule imaging of HIV-1 transcription has shown 
that RNAP II enters a long-lived pause when HIV-1 Tat 
is limiting (> 20 min), effectively limiting viral transcrip-
tion [312]. Consistent with the mechanisms described 
above, promoter clearance is restricted in the absence of 
Tat, although periodically, the viral genome can be tran-
scribed in brief pulses containing 10 or more RNAP II 
complexes. By contrast, when Tat is present in saturat-
ing concentrations, RNAP II rapidly clears the promoter 
region (one every 7–15 s), and forms convoys of elongat-
ing transcription complexes [312].

One caveat to these experiments is that they were per-
formed in transformed cell models where epigenetic 
silencing is probably less effective than in primary cells. 
Another key difference is that in the latently infected pri-
mary cells, the promoter recruitment of transcription 
initiation factors is rate-limiting. However, chromatin 
immunoprecipitation experiments have also indicated 
that promoter-proximal pausing of RNAP II appears to 
be an essential regulatory feature of the transcriptional 
control of HIV-1 in primary CD4+ T cell models of HIV 
latency [21, 313]. As in the transformed cell model sys-
tems, Tat also facilitates HIV-1 promoter clearance in 
infected primary CD4+ T cells.

Indirect evidence for RNAP II promoter-proximal 
pausing in primary cells stems from the observations of 
short, terminated HIV-1 transcripts approximately the 
size of TAR RNA detected in PBMCs obtained from both 

ART-treated and untreated PWH [217]. Short transcript 
levels are strongly associated with an existing chronic 
state of immune activation as defined by the co-expres-
sion of HLA-DR and CD38 on CD8+ T cells [217]. Addi-
tional evidence of viral transcription elongation control 
in latently infected primary CD4+ T cells comes from 
two recent studies that utilized a reverse transcription 
droplet digital PCR assay (RT-ddPCR) [218, 314]. Using 
these methods, short TAR-containing transcripts were 
detected in blood CD4+ T cells and there was a signifi-
cant post-initiation restriction to proviral transcription 
[218]. These blocks could be reversed by either TCR acti-
vation or stimulation with the protein kinase C (PKC) 
agonist ingenol-3-angelate, which stimulated the com-
pletion of viral RNA synthesis and accumulation of poly-
adenylated and multiply spliced viral transcripts [218]. By 
contrast, in T cells obtained from rectal biopsies, there 
was clear evidence of a block to proviral initiation and, 
to a significantly lesser extent, blocks to proviral elonga-
tion and RNA processing [314]. An important limitation 
of these studies was that it was impossible to distinguish 
between cells carrying replication-competent and defec-
tive viruses, raising the concern that most of the abortive 
transcripts seen in the PBMC samples arose from defec-
tive proviruses. Nonetheless, identifying tissue-specific 
differences in the mechanisms governing the transcrip-
tional regulation of latent HIV-1 will be an essential con-
sideration when designing latency reversal strategies to 
disrupt the HIV-1 reservoir in its various tissue compart-
ments [314].

Tat‑independent proviral transcription
Transcription elongation of latent proviruses is inef-
ficient in the absence of Tat but necessary to kick-start 
the formation of multiply spliced transcripts required 
for Tat and Rev synthesis. The processes and factors sup-
porting the earliest cycles of proviral transcription elon-
gation remain unclear, and there are numerous potential 
mediators for P-TEFb and SEC recruitment to the HIV 
provirus. First, Tat-independent recruitment of the SEC 
to promoter-proximally paused RNAP II on latent provi-
ral HIV-1 might be achieved via an interaction between 
the conserved YEATS domain of the adaptor proteins 
ENL or AF9 and the PAF1 subunit of PAF1c [235]. In this 
scenario, since ELL2 mRNA and protein expression are 
highly restricted in resting T cells, possibly due to tran-
scriptional repression and rapid protein turnover [240, 
241], ELL may likely substitute for its elongation activity. 
Generation of Tat in activated T cells would then coin-
cide with the inducible synthesis of ELL2, at which point 
Tat and the SEC scaffold protein AFF1/AFF4 can pro-
mote the assembly of ELL2-containing SEC complexes 
by preventing the rapid proteasomal degradation of ELL2 
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[241]. Ultimately, by stabilizing the expression of ELL2, 
Tat could significantly enhance the fraction of P-TEFb 
associated with the SEC [208].

Another plausible theory is that the initial recruitment 
of P-TEFb to latent proviral HIV-1 might be effected by 
the bromodomain-containing protein BRD4. Interest-
ingly, while nucleosomes occupying the LTR region of 
latent HIV-1 have been found to contain low AcH3 lev-
els, they characteristically possess elevated AcH4 levels 
due to KAT5 acetyltransferase activity that permits the 
occupancy of this chromatin region by both the long and 
short isoforms of BRD4 [315]. The short isoform of BRD4 
lacking the C-terminal PID can promote HIV-1 latency 
by mediating the recruitment of repressive BAF SWI/
SNF complexes [125]. By contrast, although the long iso-
form of BRD4 is also well-understood to be a potent sup-
pressor of Tat-dependent transactivation of HIV-1 [272, 
275, 316], its presence on latent proviruses could aid in 
the initial exchange of P-TEFb from 7SK snRNP com-
plexes that have been recruited en bloc to the HIV-1 LTR. 
The enzymatic activities of BRD4, including its histone 
acetyltransferase activity, may also enhance its ability to 
stimulate RNAP II activity in the absence of Tat [317, 
318]. A recent study utilizing bromodomain deletion 
mutants of BRD4 has demonstrated that the C-terminal 
PID of BRD4 is not only sufficient for P-TEFb binding 
but can also stimulate the genome-wide release of RNAP 
II from promoter-proximal pausing [319]. This inter-
esting observation suggests that while the two tandem 
bromodomains are essential for maintaining the resi-
dence of BRD4 on genic regions, particularly at or near 
transcription start sites, in part to preserve the trans-
mission of epigenetic memory during cell division [320, 
321], BRD4 can also deliver P-TEFb to the paused RNAP 
II complex without being tethered to chromatin via its 
bromodomains. Whether BRD4 needs to be dissociated 
from chromatin to recruit P-TEFb from 7SK snRNP and 
how the BRD4:P-TEFb complex is then linked to the 
hypophosphorylated RNAP II for P-TEFb to elicit its 
CTD kinase activity are important questions that remain 
to be addressed.

Activators of transcription initiation have also been 
postulated to mediate P-TEFb recruitment. For example, 
NF-κB was initially proposed to directly recruit P-TEFb 
to the proviral LTR [322]. However, more recent stud-
ies have identified several more likely candidate auxil-
iary factors that either directly recruit P-TEFb or do so 
indirectly by binding 7SK snRNP. These include the cel-
lular stress response protein HSF1, TRIM24 (aka TIF1α), 
TRIM28 (aka. KAP1 or TIF1β), and the SR protein splic-
ing factors SRSF1 and SRSF2 (aka. SC35) [323–327].

HSF1 activity as a positive HIV-1 transcription elonga-
tion factor requires a concomitant induction of P-TEFb 

biogenesis in primary T cells and is bolstered by immu-
noprecipitation experiments conducted in the J-Lat cell 
line latency model showing that HSF1 can form a com-
plex with P-TEFb that can directly bind the HIV-1 LTR 
[328]. Inhibition of HSF1 was found to effectively sup-
press the formation of elongated and processed viral 
transcripts in PMA/ionomycin-treated patient-derived 
CD4+ T cells as measured by RT-ddPCR assays for HIV-1 
transcription elongation [323]. By contrast, HSF1 inhibi-
tion did not affect the appearance of short, TAR-inclusive 
transcripts that serve as a readout of successful viral tran-
scription initiation. Interestingly, HSF1 inhibition was 
also ineffective at suppressing the formation of elongated 
viral transcripts in cells stimulated through the TCR, 
suggesting that HSF1 may play an essential role in medi-
ating the stimulation of HIV-1 transcription elongation 
in response to inducers of cellular stress but not physi-
ological T-cell signaling [323].

Through its interaction with the transcription factor 
complex RBF-2 that binds Ras response enhancer ele-
ments, TRIM24 has recently been shown to mediate the 
signal-dependent recruitment of P-TEFb to the proviral 
LTR in Jurkat T cells [324]. However, whether the recruit-
ment of P-TEFb by TRIM24 can occur in the absence of 
Tat is unclear. Finally, TRIM28 is a transcription factor 
linked to both the activation and repression of a subset 
of cellular genes and proviral HIV-1 [325, 329–331]. In 
latently infected Jurkat E4 cells, TRIM28 has been shown 
to bind and recruit the P-TEFb regulatory complex 7SK 
snRNP to the proviral promoter under basal and stimula-
tory conditions [325]. This finding suggests that P-TEFb 
exists on latent HIV-1 as a complex with 7SK snRNP at 
or near the promoter-proximal region where RNAP II is 
transcriptionally paused. This scenario is plausible since 
7SK snRNP functions to repress CDK9 kinase activity.

It is important to note, however, that recruitment of 
the 7SK snRNP complex to the provirus is insufficient to 
stimulate transcription since this requires P-TEFb to be 
exchanged from the promoter-bound 7SK snRNP to the 
elongating RNAP II, a process that likely is to be stimu-
lus-dependent. The most attractive candidate factors that 
may mediate P-TEFb exchange in the absence of Tat are 
the SR splicing factors SRSF1 and SRSF2. SRSF1 binds to 
TAR RNA at a region that overlaps with the Tat recog-
nition site and can inhibit Tat transactivation of proviral 
HIV-1 by directly competing for its binding to TAR while 
also increasing the basal level of HIV-1 transcription 
[327]. SRSF2 is widely regarded as a marker of nuclear 
speckles, where 7SK snRNP is known to accumulate 
[332]. SRSF2 reportedly associates with 7SK snRNP by 
binding the third stem-loop of 7SK snRNA and recruits 
the RNP to cellular genes where SRSF2 binds nascently 
synthesized RNA to mediate the transfer of P-TEFb 
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to promoter-proximally paused RNAP II in a manner 
analogous to the recruitment of P-TEFb to TAR by Tat 
[326]. Consistent with this finding, depletion of SRSF2 
enhanced RNAP II pausing within cellular gene bodies, 
impaired P-TEFb recruitment, and decreased polymerase 
processivity [333]. Although SRSF2 can recognize highly 
degenerate mRNA sequence elements that are proximal 
to transcription start sites and does not appear to require 
specific secondary motifs, it is unknown whether it can 
interact with HIV-1 TAR sequences. Thus, although, log-
ically, some basal transcription takes place to initiate Tat 
synthesis, the exact mechanism to achieve this in latently 
infected cells remains uncertain.

Induction of transcription initiation by TCR‑signaling 
pathways
There are no virus-specific mechanisms that mediate 
HIV-1 latency. Instead, HIV-1 latency in memory CD4+ 
T cells results from the nuclear exclusion of transcription 
initiation factors and vanishingly low expression of the 
transcription elongation factor P-TEFb, which constitute 

the two primary blocks to HIV-1 transcription in mem-
ory CD4+ T cells [334]. In addition, as described above, 
HIV-1 latency is reinforced, even in replicating cell sys-
tems, by restrictive epigenetic factors accumulating at the 
proviral promoter,

In ex vivo primary cell models or in latently infected T 
cells recovered from donors, TCR co-stimulation with 
anti-CD3 and anti-CD28 antibodies is the most effective 
at reactivating latent HIV-1 since it provides all the intra-
cellular signals necessary to induce the nuclear mobiliza-
tion of key transcription initiation factors, stimulate the 
posttranscriptional biogenesis of P-TEFb, and counteract 
epigenetic silencing [240]. By contrast, proinflammatory 
cytokines released by either activated CD4+ T helper 1 
or 2 cells or macrophages, including IFN-γ, TNF-α, IL-2, 
and IL-15, are much weaker activators of P-TEFb and are 
therefore unable to stimulate processive HIV-1 transcrip-
tion in primary cell latency models [240, 335].

Initiation of TCR signaling in CD4+ T cells in vivo usu-
ally occurs in the context of an antigen-presenting cell 
(APC) presenting pathogen-derived peptides bound to 
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MHC Class II transmembrane proteins on the cell sur-
face (Fig.  5). For maximal T-cell activation to be ena-
bled, binding of the peptide-MHC complex to the TCR 
complex is accompanied by a costimulatory engagement 
by the APC. This typically involves a pairwise linkage 
between the integral membrane protein B7 from the APC 
and its T-cell counterpart, CD28 [336].

TCR activation initiates three complementary sign-
aling cascades that lead to initiation factor mobiliza-
tion and P-TEFb biogenesis. First, TCR co-stimulation 
immediately induces a tyrosine phosphorylation cas-
cade at the cell membrane that leads to the activation 
of the lipid metabolizing enzymes phosphoinositide-
3-kinase (PI3K) and phospholipase C-γ (PLC-γ) [337], 
as diagrammed in Figs. 5 and 6. Class I PI3K enzymes, 

which are usually constitutively bound to CD28 at 
the T-cell plasma membrane, act to phosphorylate 
phosphatidylinositol-4,5-bisphosphate (PIP2) to form 
phosphatidylinositol-3,4,5-trisphosphate (PIP3) upon 
activation. PIP3 then anchors a wide range of signal-
ing proteins through their pleckstrin homology (PH) 
domains [338–340]. The binding of PIP3 to the PH 
domain of SIN1, an essential and unique component of 
the mTOR-containing complex mTORC2, releases the 
inhibitory interaction between the SIN1 PH domain 
and the mTOR kinase domain, leading to mTORC2 
activation [341].

PIP3 also binds the PH domains of PDK1 and AKT. 
PIP3 binding to AKT induces a conformational change 
that allows PDK1-mediated phosphorylation of the 

Lck

ZAP70LAT

RasGRP1

Ras-GDP Ras-GTP

RasGAPs

SOS

MEK

ERK1/2

DAG

PLC-

IP3 DAG

Ca++

NFAT

Calcineurin

PKC-

TSC1/TSC2

PDK1

PIP2

PTEN

PIP3

PI3K

AKT

T308 S473

Rheb GTPase

Cyc T1 translation

P-TEFb assembly

CDK9

CDC37

Hsp90
CycT1

CycT1 pT186
CDK9

CBM/TRAF/
Caspase 8

NEMO/IKK /IKK

I B /NF- B

NF- B
(p65/p50)

TCR Costimulatory Pathway (CD28)

mTORC1

mTORC2

GSK3

Vav

MEKK1

MKK4/MKK7

JNK

c-Jun

AP-1
c-Fos

PLC- 1 Rac1/Cdc42

Raf-1/B-Raf

NFAT
NF- B

TATA

1-cuN0-cuN

TAR

NFAT

Sp1

AP-1 AP-1

Transcription Initiation

Fig. 6  TCR signaling pathways in primary CD4+ T cells contribute to the stimulation of proviral HIV-1 transcription. RasGRP1-Ras-Raf-MEK-ERK1/2 
and PI3K-mTORC2-AKT-mTORC1 complement one another in stimulating the posttranscriptional synthesis of CycT1, leading to P-TEFb assembly. 
The exact mechanisms by which ERK and mTORC1 stimulate CycT1 translation are yet to be fully delineated. Although intracellular calcium release, 
the activation of PKC-θ and the JNK MAPK pathway are dispensable for the formation of P-TEFb, they are likely to mediate the recruitment of RNA 
polymerase II (RNAP II) to proviral HIV and thus its eventual phosphorylation by P-TEFb to stimulate processive transcription elongation



Page 21 of 38Mbonye and Karn ﻿Retrovirology            (2024) 21:6 	

activation loop segment of AKT at Thr308 [342]. 
Full activation of AKT by PI3K-mediated signaling 
is achieved by mTORC2 phosphorylation of AKT at 
Ser473 [343]. Ultimately, downstream signaling from 
AKT results in the activation of a second mTOR-con-
taining complex, mTORC1, widely considered to be 
central to the stimulation of ribosomal activity [344, 
345], and which we have recently found is an essen-
tial regulatory component of the biogenesis of P-TEFb 
[240] (Fig. 6).

In the second complementary pathway, PLC-γ 
anchored to the membrane by binding PIP3 via its PH 
domain and activated by tyrosine phosphorylation of its 
Src Homology 2 (SH2) domain [346, 347], hydrolyzes 
PIP2 to generate the second messenger inositol-1,4,5-
triphosphate (IP3), which mobilizes calcium release from 
the endoplasmic reticulum into the cytoplasm. There-
fore, the activation of PI3K through the co-stimulatory 
receptor CD28 can likely contribute to PLC-γ PH domain 
membrane targeting and PLC-γ activation. PIP2 hydroly-
sis also generates diacylglycerol (DAG), which directly 
contributes to the activation of several C1 domain-con-
taining intracellular signaling proteins including protein 
kinase C (PKC) enzymes and the Ras guanine nucleo-
tide exchange factor RasGRP [348–350] (Figs.  5 and 
6). Elevated cytoplasmic calcium levels stimulate the 
phosphatase calcineurin, resulting in the activation and 
nuclear translocation of NFAT, the transcription fac-
tor that is essential for mediating the initiation of provi-
ral HIV-1 transcription in primary CD4+ T cells [21, 22, 
167].

C1 domains are approximately 50 amino acids long, are 
cysteine-rich, and contain twin zinc fingers that coor-
dinate proper domain folding [348]. Structural studies 
have shown that DAG binding to a hydrophilic cavity in 
the C1 domain results in a contiguous hydrophobic sur-
face that enables the region to interact favorably with the 
lipid bilayer, thereby stabilizing PKC and RasGRP mem-
brane insertion [351, 352]. Of the four known isoforms 
of RasGRP, the C1 domains of RasGRP1, RasGRP3, and 
RasGRP4 bind DAG or DAG-mimicking phorbol esters 
with high affinity and, consequently, they get recruited to 
the plasma membrane where they can access membrane-
anchored Ras to facilitate guanine nucleotide exchange 
[350, 353].

DAG binding to the C1 domains of conventional and 
novel PKC isoenzymes leads to their membrane recruit-
ment and stimulation of their kinase activities [349]. Of 
these PKC enzymes, PKC-θ is the predominant func-
tional isoform in T cells and is critical for mediating 
both TCR-induced NF-κB and global T-cell activation 
[354–356]. Indeed, the reactivation of latent HIV-1 in 
primary cells by DAG-mimicking PKC agonists is mainly 

due to their ability to stimulate the activity of the canoni-
cal NF-κB transcription factor complex p65 (Rel A):p50 
through PKC-θ [167, 240].

Finally, TCR signaling activates the JNK and ERK 
MAPK signaling pathways which lead to the assembly 
and nuclear induction of c-Fos:c-Jun AP-1 complexes 
(Fig.  6). The cooperative interaction between AP-1 and 
NFAT is essential for HIV-1 and IL-2 gene transcrip-
tion [357]. The MAPK signaling pathways are initiated by 
the stimulation of RasGRP1 by DAG, which in T cells is 
required for the allosteric activation of SOS, a second Ras 
GDP-GTP exchange factor that is directly anchored to 
the membrane by a complex of tyrosine-phosphorylated 
LAT and the adaptor protein Grb2 [358, 359]. Guanine 
nucleotide exchange activity of SOS is triggered by the 
initial activation of Ras GTPase by RasGRP1 through a 
positive feedback mechanism that involves the allosteric 
binding of GTP-bound Ras to SOS [358]. In turn, activa-
tion of Ras by RasGRP and SOS results in a conforma-
tional change in Ras, which enables the robust formation 
of Ras:Raf complexes at the membrane that eventually 
leads to the activation of the MAP kinase isoforms ERK1 
and ERK2 [360]. By contrast, c-Jun N-terminal kinase 
(JNK) MAPK signaling is a stress-responsive pathway 
whose activation is mediated through stimulation of Rac1 
GTPase by the GDP-GTP exchange factor Vav [361]. 
Upon TCR co-stimulation, Vav is anchored to the mem-
brane by utilizing its SH2 (Src Homology 2) domain to 
bind tyrosine-phosphorylated ZAP-70 [362, 363], even-
tually leading to the assembly and nuclear induction of 
c-Fos:c-Jun AP-1 complexes in part elicited by Vav-Rac1-
MEKK1-MKK4/7-JNK-c-Jun signaling.

Regulation of P‑TEFb by TCR signaling
In primary T cells, P-TEFb expression is enabled by TCR 
signaling in parallel with the nuclear mobilization of 
transcription initiation factors. The biogenesis of P-TEFb 
is illustrated in Fig. 4. Immunoprecipitation studies have 
clearly shown that 7SK snRNP is largely unassembled in 
resting memory T cells due to restricted CycT1 expres-
sion and Thr186-dephosphorylation of the activation 
loop of CDK9 [364]. High-resolution imaging experi-
ments employing a combination of immunofluorescence 
and RNA FISH have indicated that 7SK snRNP assembly 
occurs within a few hours after TCR activation concomi-
tant with the nuclear localization of HEXIM1 [240]. In 
these imaging studies, the 7SK snRNA gradually forms 
a doughnut structure surrounding the nucleolus that 
colocalizes with both nucleoplasmic P-TEFb (Fig. 4) and 
the Ser2 CTD-phosphorylated RNAP II (Mbonye and 
Karn, unpublished results) as reactivation progresses. 
Thus, assembled 7SK snRNP in activated memory T 
cells appears to be situated within the same subnuclear 
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phase-separated condensates that harbor transcription-
ally poised genes, including proviral HIV-1, perhaps to 
enable the convenient exchange of P-TEFb from 7SK 
snRNP.

Most circulating memory CD4+ T cells in a healthy 
adult are in a quiescent state characterized by the absence 
of cell proliferation markers (such as Ki67 and cell cycle 
cyclin proteins) and the nuclear exclusion of critical tran-
scription activators [240]. These resting T cells are also 
deficient in P-TEFb due to a posttranscriptional block 
of CycT1 mRNA translation combined with the protea-
somal degradation of the CycT1 protein [365–369]. The 
pre-existing CycT1 transcripts in resting memory T cells 
may be restricted to cytoplasmic ribonucleoprotein con-
densates, such as stress granules, that are known to har-
bor translationally repressed mRNAs [370].

Biochemical and imaging studies of quiescent T cells 
have shown that in the absence of CycT1, CDK9 is 
sequestered in an inactive form in the cytoplasm by the 
kinase-specific chaperone complex Hsp90/Cdc37 [240, 
371, 372]. Stimulation of TCR signaling induces the post-
transcriptional synthesis of CycT1, which triggers the 
exchange of CDK9 from Hsp90/Cdc37 and the phos-
phorylation of CDK9 on its activation loop at Thr186 
(pThr186 CDK9) [240, 364, 371]. Subsequently, pThr186 
CDK9 coordinates the stable heterodimeric assembly of 
P-TEFb, which may be a prerequisite for the enzyme’s 
import into the nucleus [371, 373]. Coordination of 
P-TEFb assembly by pThr186 CDK9 is also required to 
incorporate P-TEFb into 7SK snRNP [261], which acts as 
an exchange pool for delivering P-TEFb to genomic sites 
of active transcription [269, 374–376].

An additional inducible phosphorylation site on the 
activation loop of CDK9, pSer175 CDK9, identified by 
tandem mass spectrometry, is only present on a subset of 
P-TEFb that is dissociated from 7SK snRNP [272]. Muta-
tion of Ser175 to a phosphomimetic residue or an alanine 
produces severe defects in the association of the P-TEFb 
heterodimer CDK9:CycT1 with BRD4 [271, 272]. These 
findings indicate that the unmodified Ser175 is essential 
for mediating a critical interaction between the activation 
loop region of CDK9 and the C-terminal P-TEFb interact-
ing domain of BRD4. We have also demonstrated that Tat 
can coopt pSer175 CDK9 to enhance Tat’s interaction with 
P-TEFb to facilitate the competitive recruitment of P-TEFb 
to proviral HIV-1 [272]. Based on these observations, we 
have developed an immunofluorescence flow cytom-
etry assay that defines the formation of transcriptionally 
active P-TEFb as the dual detection of CycT1 and pSer175 
CDK9 [240]. This immunofluorescence flow assay (P-TEFb 
immuno-flow) has proven to be valuable in enabling the 
identification of stimuli and small molecule agents that can 
induce active P-TEFb expression in primary CD4+ T cells 

as well as permitting the investigation of signaling path-
ways that mediate their stimulatory effects.

Of all the stimuli tested thus far by P-TEFb immuno-
flow, TCR co-stimulation is the most robust at eliciting 
active P-TEFb expression in memory CD4+ T cells. By 
dissecting the complex array of TCR signaling pathways 
in inhibitor-based experiments in a primary T-cell model 
of HIV-1 latency [21, 377] alongside healthy donor-
derived memory T cells, we have been able to define the 
signaling pathways that are essential for the generation of 
transcriptionally active P-TEFb and P-TEFb-dependent 
proviral reactivation [240]. Crucial among these findings 
is the demonstration that the RasGRP1-Ras-Raf-MEK-
ERK1/2 and PI3K-mTORC2-AKT-mTORC1 pathways 
can complement one another in inducing the posttran-
scriptional elevation of CycT1 [240]. Combined inhibi-
tion of these pathways with a PI3K inhibitor (LY294002) 
and the MEK inhibitor, U0126, abrogates active P-TEFb 
expression and substantially suppresses latent HIV-1 
reactivation. PI3K-mTORC2-AKT-mTORC1 affects 
P-TEFb biogenesis, most likely by facilitating the transla-
tion of CycT1 (Fig. 4). This is consistent with the notion 
that mTORC1 is well established to be essential for the 
initiation of protein synthesis by triggering the sequen-
tial phosphorylation of components of the translation 
machinery, including the ribosomal protein S6 kinase 
(S6K), its downstream substrate ribosomal protein S6 
(rpS6) as well as translation initiation and elongation fac-
tors [345]. Since DAG-mimicking C1 domain agonists 
are not known to signal through PI3K or AKT, it will be 
interesting to determine whether their stimulation of 
ERK1/2 activity through RasGRP1 can lead to P-TEFb 
biogenesis through the activation of mTORC1 or by 
inducing a similar phosphorylation cascade of translation 
factors.

Several studies have demonstrated that the dissocia-
tion of 7SK snRNP to release the elongation activity of 
P-TEFb can occur in response to stress signals or acti-
vation of specific cellular pathways, including calcium, 
PKC-θ, ERK MAPK, and PI3K/AKT signaling [262, 378–
381]. For instance, using a Jurkat T-cell model system of 
HIV-1 latency, we have shown that a brief (within one h) 
challenge of these cells with a DAG-mimicking phorbol 
ester or through the TCR is sufficient to cause the release 
of P-TEFb from 7SK snRNP in an ERK MAPK-dependent 
manner [262]. By conducting chromatin immunoprecipi-
tation studies, we demonstrated further that inhibition of 
ERK activation substantially suppresses HIV-1 transcrip-
tion elongation by preventing the recruitment of P-TEFb 
to the TAR region of proviral HIV-1 [262]. These findings 
have generated the hypothesis that the signal-dependent 
release of P-TEFb from 7SK snRNP is due to changes in 
RNA and post-translational modifications (PTMs) that 
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trigger conformational changes that disrupt the assembly 
of the ribonucleoprotein complex. Subsequently, certain 
RNA modifications have been reported to have a regula-
tory role in 7SK snRNP assembly. Pseudouridylation of 
7SK snRNA on its third stem-loop at U250 was observed 
to be essential for stabilizing 7SK snRNP assembly as 
point mutation of U250 or shRNA depletion of the cata-
lytic subunit of the pseudouridylating enzyme resulted 
in 7SK snRNP disruption, exchange of P-TEFb into tran-
scriptionally active complexes, and Tat-dependent reac-
tivation of latent HIV-1 [382]. More recently, an RNA 
methylation-dependent switch on 7SK conferred by the 
RNA methyltransferase METTL3 in response to epider-
mal grown factor signaling in HeLa cells was found to 
induce a remodeling of 7SK snRNP to release HEXIM1 
and P-TEFb while facilitating the assembly of 7SK snRNA 
with heterogeneous nuclear ribonucleoproteins [383]. 
Also affirming this hypothesis are studies demonstrat-
ing that several Ser/Thr phosphatases, including PP2B, 
PP1α, and PPM1G, can catalyze the transient dephos-
phorylation of the activation loop of CDK9 at Thr186, 
leading to the destabilization and release of P-TEFb from 
7SK snRNP [284, 378]. Dephosphorylation of pThr186 
CDK9 has been proposed to be especially important for 
delivering P-TEFb to proviral HIV-1 [284, 384]. However, 
this mechanism of 7SK snRNP dissociation requires that 
the released P-TEFb be rapidly rephosphorylated since 
pThr186 CDK9 is critical for stabilizing CDK9:CycT1 
heterodimerization without which CDK9 would be cata-
lytically inactive [261, 271, 371].

PKC-θ-dependent phosphorylation of HEXIM1 at 
Ser158 (pSer158 HEXIM1), situated right in the middle 
of its bipartite RNA binding motif, is thought to occur 
on 7SK-free HEXIM1 and has been identified as one of 
the modifications that could be functionally important 
for preventing 7SK snRNP reassembly in T cells [379]. 
Biochemical experiments conducted in Jurkat T cells 
and employing a dominant negative PKC-θ mutant dem-
onstrated that the activation of PKC-θ by phorbol ester, 
or through the TCR, can also mediate the dissociation 
of 7SK snRNP, albeit through mechanisms that are yet 
to be defined [379]. PKC-θ-dependent dissociation of 
7SK snRNP and pSer158 HEXIM1 are, in turn, associ-
ated with the stimulation of P-TEFb elongation activity 
[379]. In a mass spectrometry-based proteomics study 
designed to identify posttranslational modifications that 
regulate 7SK snRNP assembly, we identified two adjacent 
tyrosine sites of HEXIM1 (Tyr271 and Tyr274) that are 
subject to alternative phosphorylation and whose phos-
phomimetic mutations are associated with the disso-
ciation of P-TEFb and HEXIM1 from 7SK snRNA [385]. 
While the stable ectopic expression of the phospho-
mimetic HEXIM1 mutant Y271E/Y274E did not elicit a 

spontaneous reactivation of proviral gene expression in 
a Jurkat latency model, the Y271F/Y274F mutant sup-
pressed signal-dependent proviral reactivation. Also, 
Y271F/Y274F HEXIM1 imparted a severe growth defect 
on these Jurkat T cells once they were switched to a cul-
ture medium containing low serum [385]. Although we 
are yet to identify the nuclear tyrosine kinase involved, 
these data indicate that Y271F/Y274F may block the 
exchange of active P-TEFb from the 7SK complex, 
thereby limiting the level of P-TEFb below the threshold 
required to support transcription elongation of the HIV-1 
provirus and cellular genes. Interestingly, these tyrosine 
sites are situated in an unstructured region immediately 
upstream of the HEXIM1 C-terminal coiled-coil domain 
reported to form inhibitory interactions with the cata-
lytic site of CDK9 [269, 270]. Therefore, phosphorylation 
of Tyr271 and Tyr274 may contribute to reversing the 
inhibition of CDK9 kinase. In this respect, the phospho-
mimetic Y271E/Y274E mutant not only abrogates 7SK 
snRNP assembly but also causes the exclusion of CDK9 
from the nucleus, as observed in microscopic imaging 
experiments [385]. Thus, Tyr271/Tyr274 may mediate 
HEXIM1 interactions with P-TEFb, essential for revers-
ibly repressing the enzyme’s kinase activity. Sequestra-
tion of P-TEFb within 7SK snRNP may also stabilize the 
retention of P-TEFb in the nucleus, allowing for its con-
venient exchange onto transcriptionally active genes.

Latency reversal using TCR pathway activators
An ideal latency reversal agent (LRA) is expected to boost 
the transcriptional reactivation of latent HIV-1 in  vivo 
without the unwanted and potentially harmful global 
T-cell activation responses elicited by TCR signaling. The 
few LRAs that have shown promise in reactivating latent 
HIV-1 in primary cell or animal models act by either tar-
geting select TCR pathways [21, 22, 167, 240, 386, 387] or 
through heat shock protein stress response pathways that 
culminate in the nuclear mobilization of HSF1 [323, 328, 
388, 389]. Similarly, LRAs that target the non-canonical 
NF-κB pathway and those that mimic the second mes-
senger diacylglycerol (DAG) are not only able to reacti-
vate latent HIV-1 but also help to reduce HIV-1 reservoir 
size in preclinical animal models [386, 390, 391].

We have recently reported that DAG-mimicking PKC 
agonists such as ingenol-3-angelate and prostratin can 
stimulate the biogenesis of P-TEFb to reactivate latent 
HIV-1 in primary CD4+ T cells primarily via the Ras-
GRP1-Ras-Raf-MEK-ERK1/2 MAPK pathway rather than 
through PKC enzymes [240]. In the context of TCR sign-
aling, we also showed that the ERK1/2 MAPK pathway 
is complemented by the PI3K-mTORC2-AKT-mTORC1 
pathway in mediating TCR-induced P-TEFb expression 
in primary T cells (Fig. 6). By contrast, both PKC and the 
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c-Jun MAPK pathway were found to be dispensable for 
generating P-TEFb or even reactivating latent HIV-1 in 
an ex vivo primary cell model [240].

Since the activation of PKC-θ and c-Jun MAPK can 
trigger NF-κB- or NFAT/AP-1-dependent T-cell acti-
vation signals that are associated with undesirable pro-
inflammatory responses [354, 357], selectively targeting 
the RasGRP1 C1 domain might be an attractive strategy 
for reversing HIV-1 latency in T cells. Despite the similar 
overall structure of C1 domains between PKC enzymes 
and RasGRP proteins, subtle differences can confer dif-
ferential binding and membrane association properties 
allowing the identification of DAG analogs that display 
binding selectivity. There has been a significant effort to 
develop synthetic DAG analogs that distinguish between 
various PKC enzymes or are more selective in binding 
RasGRP proteins [392–397]. Although synthetic DAG 
mimics such as bryostatin 1 analogs (bryologs), prostratin 
analogs, and DAG lactones have demonstrated promise as 
potential latency-reversing agents in cell line and primary 
cell models [398–402], these agents have been designed to 
target the C1 domains of PKC with high affinity and it is 
therefore likely that they their effects are elicited primarily 
through canonical NF-κB signaling. Identifying synthetic 
RasGRP1-selective C1 domain agonists able to effectively 
stimulate P-TEFb biogenesis in primary T cells is a prom-
ising latency reversal strategy that might circumvent unde-
sirable cellular and systemic inflammatory responses.

Concluding remarks
As described in this review, HIV-1 latency is inextri-
cably linked to the cell biology of the host T cell. The 
main driver for entry into latency is the transitioning of 
infected permissive effector cells into quiescent memory 
cells. This transition is associated with a massive shut-
down of the transcription apparatus and cellular metab-
olism. Consequently, reactivation of HIV-1 requires the 
overcoming of multiple blocks, including the reversal of 
epigenetic silencing factors and the mobilization of tran-
scriptional activators. Central to this mechanism is the 
biogenesis of P-TEFb, the critical co-factor for Tat, which 
permits efficient promoter clearance and subsequent 
elongation.

Although HIV-1 transcription has been studied for over 
30 years, this review has highlighted several poorly under-
stood mechanisms that still need investigation. First, an 
improved understanding of the structural basis for pro-
moter-proximal pausing, which may be due to a combina-
tion of structural and kinetic barriers, will lead to a better 
understanding of how the provirus can toggle between 
latency and active transcription in a suboptimally acti-
vated T-cell. Second, the detailed mechanism of P-TEFb 
release from the 7SK snRNP complex and its delivery to 

genes remains mysterious. Although the textbook models 
for transcription show unimolecular interactions, in fact 
transcription occurs in the context of the nuclear struc-
ture. Cell imaging and biochemical experiments now offer 
exciting opportunities to determine whether HIV-1 provi-
ruses are recruited into transcription factories where acti-
vators of transcription initiation and P-TEFb accumulate. 
Finally, the central paradox of HIV transcription remains 
largely unsolved: how are the initial rounds of HIV-1 tran-
scription achieved in the absence of Tat? It seems likely 
that the mechanism involves the recruitment of P-TEFb, 
but the specific mediators for P-TEFb delivery are still 
under investigation. Understanding how HIV-1 transcrip-
tion is ignited when T cells are activated may be the key to 
understanding how to efficiently reverse latency.

One of the main schemes to eliminate the residual res-
ervoir is to deliberately reactivate the latent HIV-1 pro-
viruses to enable clearance of persisting latently infected 
cells—the “Shock and Kill” strategy. Several recent pre-
clinical studies in animal experimental models have 
generated promising findings in demonstrating a proof-
of-concept for the Shock and Kill approach [386, 390, 
403]. However, it has been challenging to identify key rate-
limiting steps that can be targeted to efficiently reverse 
latency. Given the numerous steps involved in reactivating 
HIV-1 transcription at the molecular level, it is not sur-
prising that genetic screens for HIV-1 latency factors have 
uncovered a bewildering array of mechanisms controlling 
HIV-1 transcription [72, 404–412]. Similarly, although a 
wide range of latency-reversing agents have been identi-
fied, many with distinct mechanisms of action [413, 414], 
LRAs have, so far, only induced transient viral production 
in infected individuals but have failed to lower the size of 
the latent reservoir [414].

Thus, despite extensive efforts, “Shock and Kill” has 
largely failed because efficient, non-toxic LRAs remain 
to be discovered. A key message from this review is that 
it seems unlikely that efficient viral reactivation can be 
achieved without activating both HIV-1 transcriptional 
initiation and elongation. Thus, carefully designed com-
binations of LRAs will probably be required to achieve 
viral reactivation. Several directed screens for synergies 
between latency-reversing agents have recently been 
completed and have uncovered promising combina-
tions of small molecules and biologics [21, 410, 415]. 
Alternatively, selective activation of T-cell signaling 
pathways, such as non-canonical NF-κB, MAPK ERK, 
and mTORC1, may offer an efficient way to reverse HIV 
latency while minimizing toxicities.
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