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Abstract 

Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more 
than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is estab-
lished soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer 
from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut micro-
bial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activa-
tion, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts 
with a gut microbiome that is continuously evolving while concomitantly shaping the infant’s immune ontogeny. 
Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-
directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing 
gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time 
when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbi-
ome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut 
microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system 
might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current 
state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune 
landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential 
therapeutic approach to achieve ART-free viral suppression in the pediatric population.
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Background
Despite the widespread availability and efficacy of 
antiretroviral therapy (ART) in reducing vertical HIV 
transmissions [1], pediatric HIV continues to be a major 
global health concern, with nearly 120,000 children 
infected with the virus annually [2]. As a result, approxi-
mately 1.4 million children worldwide were living with 
the virus, in 2023 [2]. While ART is efficacious in sup-
pressing productive HIV replication and controlling 
HIV-associated disease progression, it cannot eliminate 
the viral reservoir that is established soon after infection. 
Consequently, to keep the productively replicating virus 
suppressed, children living with HIV (CLWH) are forced 
to adhere to ART for their entire lives. Life-long ART is 
associated with huge financial burden [3], social stigma 
[4] and complications such as the development of drug-
resistant viral variants [5], and long-term metabolic and 
neurologic diseases [6]. These limitations highlight the 
necessity for the development of safe and cost-effective 
novel approaches to achieve drug-free viral suppression 
in the pediatric population.

Colonization of the gastrointestinal (GI) tract by 
microbes begins at parturition and/or immediately after 
birth (though some have proposed potential coloniza-
tion even in utero [7–9]) and continues to evolve dur-
ing the first three years of life. The evolution of early life 
microbiome is dependent on multiple factors such as 
birth mode, gender, maternal microbial composition, diet 
(breast milk or formula), antibiotic exposure, geographi-
cal locations, and environmental factors [10]. The matur-
ing microbiome plays a crucial role in shaping a child’s 
immune development [11] and has been increasingly rec-
ognized as a contributor to human disease [12] including 
infectious diseases [13]. Notably, the first 2  years of life 
is also the time when children are exposed to HIV both 
perinatally (in utero and during delivery) and postna-
tally (during breastfeeding). Pediatric HIV infection is 
associated with alterations in the gut microbial compo-
sition [14, 15], massive depletion of CD4 + T cells in the 
GI tract [16], inflammation and immune activation [17], 
and establishment of viral reservoirs [18]. Therefore, to 
identify strategies that can reduce viral reservoir size and 
achieve viral remission in the absence of ART, delineating 
the interactions of gut resident microbes with the matur-
ing immune system of a child living with HIV will be key. 
This review will summarize our current knowledge of 
the trans-kingdom interactions between the vertically-
transmitted HIV and gut microbiome with the maturing 
immune system of CLWH. Additionally, we will focus on 
interventions targeting the microbiome with implications 
for drug-free HIV remission in the pediatric population.

Main text
HIV persistence in the pediatric population
The majority of children who are infected perinatally 
or postnatally through breastfeeding, if left untreated, 
succumb to AIDS within two to three years of age [19]. 
Initiation of ART in children results in suppression of 
plasma viral loads, with almost equal potency as that of 
adults [20, 21]. Early initiation and adherence to ART 
significantly impede disease progression and result in a 
relatively smaller HIV reservoir size [22–24], but do not 
eliminate the reservoir. This is evident from the case of 
“Mississippi baby” who was born with HIV and was put 
on ART within 30  h of birth [25]. After 18  months of 
ART, treatment was discontinued. Although this child 
remained virally-suppressed without ART for 27 months, 
HIV eventually rebounded, indicating very early seeding 
and persistence of rebound-competent HIV in therapy-
suppressed children. Similar rapid rebound in viremia 
within 7 to 35  days of analytical treatment interruption 
has been documented in experimentally Simian/Human 
immunodeficiency virus (SHIV)-infected infant rhe-
sus macaques [26, 27]. In contrast to adults, the rate of 
decay in proviral DNA levels is considerably slower in 
children [28] which might indicate either inherent differ-
ences in the nature of latently infected cells in adults and 
children, or an inefficient elimination of infected cells by 
the relatively immature immune system of children. Fur-
thermore, clonal expansion of latently infected cells is 
considered a major mechanism for the maintenance of 
HIV reservoirs over time [29, 30]. Latently infected, rest-
ing CD4 + T cells isolated from vertically-infected chil-
dren can be activated to produce replication-competent 
virus, confirming their potential to contribute to the viral 
recrudescence upon therapy cessation [31].

HIV persistence on ART in children is not very well-
characterized due to the challenges of inadequate volume 
of blood samples available for quantitative assessments 
[32]. Unlike adults, where memory CD4 + T cells are 
the main cellular source of harbored HIV during ART 
[33–35], in children, naïve CD4 + T cells are a major con-
tributor to the total HIV reservoir [27, 36]. Additionally, 
using SHIV-infected infant rhesus macaques, the GI tract 
was demonstrated as a major anatomical site that harbors 
viral RNA/DNA-positive T cells after long term ART-
suppression [26, 37]. In these infant macaques, upon 
treatment interruption, gut resident CD4 + T cells were 
the source of the quickest and strongest viral rebound. 
Therefore, HIV persistence within cellular reservoirs in 
children represents a challenge that needs to be over-
come to achieve ART-free viral control in the pediatric 
population.
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Gut microbiome in pediatric HIV infection
HIV exposure is associated with disruption of the gut 
epithelial barrier and translocation of GI microbes and 
microbial products to the lamina propria, and eventually 
to systemic circulation [38]. Microbial translocation is a 
key driver of immune activation and chronic inflamma-
tion that leads to HIV disease progression [38–40]. HIV 
exposure-induced gut mucosal damage provides favora-
ble conditions for alterations in the composition of gut 
microbial communities, also known as microbial dysbio-
sis [41]. Multiple studies in adults have discussed micro-
bial dysbiosis in the GI tract, including alterations in the 
diversity of bacteria [42], fungi [43, 44] and virome [45, 
46]. To date, only a few studies have focused on microbial 
dysbiosis in children and have only studied the gut bacte-
riome [14, 15, 47–50].

Similar to adults [51], the gut microbiome of CLWH 
also demonstrates a lower bacterial richness and diversity 
with altered colonization of bacterial taxa compared to 
children without HIV [14, 49, 50]. While there are differ-
ences in specific taxa altered upon HIV infection among 
various studies, owing to alterations in geographical loca-
tion, age, route of HIV exposure and potential differences 
in the microbial sequencing approach, most of the stud-
ies have demonstrated an increase in the relative abun-
dance of bacteria associated with immune inflammation 
and activation and a decrease in bacteria associated 
with maintenance of gut permeability and integrity. For 
instance, using a cohort of perinatally infected CLWH 
from India, Kaur et  al., demonstrated an elevated rela-
tive abundance of Prevotella, a bacterial taxon associated 
with upregulation of microbial translocation marker, sol-
uble CD14 [52], and immune inflammation marker [53], 
interferon-gamma inducible protein 10 (IP-10) [49]. In 
the same cohort of children and additional cohorts from 
Zimbabwe, Spirochaetes and Corynebacterium, bacteria 
that promote immune inflammation [54, 55], were upreg-
ulated during chronic HIV infection [49, 50]. Finally, 
Lachnospiraceae [49, 50, 56] and Clostridia [14], bacte-
rial taxa that can produce anti-inflammatory short chain 
fatty acids such as butyric acid [57] and can maintain gut 
barrier integrity [58] were found to be downregulated 
in CLWH on suppressive ART, compared to uninfected 
children. Whether this HIV-induced modulation of the 
gut microbiome creates an immune environment that 
provides a competitive advantage for establishment and 
maintenance of a stable reservoir needs further inves-
tigation. In fact, in a recent clinical trial in adults liv-
ing with HIV, the Bacteroidales:Clostridiales ratio was 
inversely correlated with HIV reservoir size and viral 
control post-analytical ART interruption (ATI) [59], 
highlighting the potential contribution of the micro-
biome of an individual on their HIV persistence status. 

Furthermore, in an in vitro study, butyric acid producers 
that are downregulated in CLWH on ART were shown 
to induce viral reactivation from latency [60], further 
highlighting the complex interaction that exists between 
gut bacterial environment and the vertically transmitted 
virus in maintaining a stable viral reservoir. To date, the 
majority of pediatric studies to understand the impact 
of viral infection on the gut microbiome in CLWH have 
focused on cohorts from low- and middle-income coun-
tries (LMICs), where the prevalence of HIV is highest. 
Consequently, HIV-mediated gut microbial dysbiosis in 
US pediatric cohorts remains uncharacterized. A recent 
study comparing the fecal microbiome of adults from 
the US, Botswana, and Uganda has indicated that despite 
the occurrence of HIV-mediated gut microbial dysbiosis 
in individuals from each region, there was no similar-
ity between altered bacterial taxa across geographical 
regions [61]. Since the phylogenetic composition of the 
gut microbiome of children from different geographical 
locations is distinct due to differences in diet, cultural 
and socioeconomic status [62], studies focused on pro-
filing any potential effect of HIV-mediated gut microbial 
changes on established viral reservoirs in children from 
distinct geographical locations would be crucial to bet-
ter understand the interactions of vertically acquired HIV 
with the gut microbiome.

Moreover, to date, studies in CLWH interrogating the 
interactions of the virus with the gut microbial taxa have 
not specifically categorized children into perinatally (in-
utero or during delivery) or postnatally (breastfeeding) 
infected. Therefore, future studies to delineate the differ-
ences in microbial dysbiosis among perinatally and post-
natally infected children should be performed.

While the interactions of the developing gut micro-
biome of CLWH with the establishing viral reservoir 
are investigated, the impact of small molecular antiret-
rovirals and common childhood antibiotics, that have 
the potency to alter the colonization of gut microbiome 
needs to be considered. Based on the recommendations 
from The Panel on Antiretroviral Therapy and Medi-
cal Management of Children Living with HIV, currently, 
ART is initiated on every child diagnosed with HIV [63]. 
Studies in CLWH have demonstrated that despite the 
administration of effective ART, alterations in gut micro-
biota composition persist and long-term ART only par-
tially resolves gut microbial dysbiosis [14, 50]. However, 
ART can also potentially contribute to an altered micro-
biome [14, 49]. Moreover, exposure to multiple types of 
ART regimens such as Ritonavir-boosted protease inhibi-
tor or non-nucleoside reverse transcriptase inhibitor 
(NNRTI)-based regimens resulted in differential micro-
bial colonization [14]. Specifically, children on protease 
inhibitor-based regimens had lower bacterial diversity 
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compared to those on NNRTI-based regimens. It is 
hypothesized that this protease inhibitor-mediated alter-
ation of the gut microbial colonization is due to altered 
microbial metabolism, that inactivates cytochrome P450 
[14]. Similar to ART, the effect of cotrimoxazole, a broad-
spectrum antibiotic commonly prescribed in children 
of developing countries [64], has also been investigated 
in the setting of HIV infection [15, 50]. Antibiotic treat-
ment resulted in the alteration of the gut microbiome 
of CLWH to a dampened inflammatory phenotype [65]. 
Furthermore, differential gut bacterial taxa were reported 
in CLWH treated with ART and cotrimoxazole compared 
to antibiotic-naive ART-treated children [15], implying 
interactions of antibiotics and antiretrovirals. Addition-
ally, HIV-induced microbial dysbiosis in children might 
also lead to differential metabolism of antiretrovirals and 
antibiotics leading to reduced bioavailability of the drugs 
[66], although this hypothesis needs to be investigated in 
the setting of pediatric HIV infection.

Impact of gut microbiome on the developing immune 
system in pediatric HIV infection
The immune system of pediatric elite controllers (PECs), 
an extremely rare group of children who can control 
HIV without ART [67, 68], provides a model to guide the 
development of therapeutic strategies to achieve drug-
free long-term HIV suppression. An altered immune 
profile in PECs compared to pediatric progressors (PPs), 
a population that progresses to disease, in the absence of 
therapy, has been documented [68]. Since the gut micro-
biome in a child plays a crucial role in educating and 
shaping the immune system [69], we hypothesize that 
modulating this microbiome-driven early-life immune 
ontogeny to a landscape that mimics that of PECs might 
be a potential way to achieve ART-free viral suppression. 
To build an immune system that can control HIV repli-
cation without treatment, understanding the influence of 
specific gut microbial species on the immune response 
observed in PECs is key.

The acute phase of HIV infection is characterized by 
activation and dramatic depletion of CD4 + T cells. After 
ART initiation, CD4 + T cell levels are partially restored, 
active HIV replication is suppressed, and life-long viral 
latency is established in memory CD4 + T cells [70–
72]. Unlike PPs, PECs have higher proportions of naïve 
CD4 + T cells and lower activated and exhausted memory 
CD4 + T cells [68]. Since multiple studies demonstrated 
that in the pediatric population, naïve and not memory 
CD4 + T cells are the major contributors to the total HIV 
reservoir [27, 36], understanding how gut commensal 
microbes interact with these two populations of CD4 + T 
cells will be important to determine the influence of 
gut microbiome on HIV persistence. Gut commensal 

bacteria can drive the differentiation of intestinal naïve 
CD4 + T cells to T cell effector subsets, including Th17 
and regulatory T cells (Tregs). Importantly, Faecalibac-
terium was correlated with a higher abundance of naïve 
CD4 + T cells [73]. A proper balance of functional Th17 
and regulatory T cells (Tregs), involved in the mainte-
nance of gut mucosal integrity and dampened immune 
activation, was indicated to be crucial for HIV suppres-
sion in the pediatric population [74–76]. Interestingly, 
gut bacterial species including, C. coccoides, Staphylococ-
cus, C. perfringens and Bacteroides fragilis predicted the 
levels of Tregs and Th17 cells in pediatric cohorts living 
with the virus [15]. On the other hand, gut bacterial com-
mensals can interact with intestinal memory CD4 + T 
cells and drive their activation and release of epithelial 
barrier-protective cytokines [77]. While the association 
of CD4 + T cell activation status with HIV reservoir is 
lacking in PECs, in adult elite controllers, this T cell phe-
notype was associated with a reduced HIV reservoir size 
[78, 79]. Therefore, gut microbial components that can 
induce a CD4 + T cell phenotype as observed in PECs 
might lead to reduced viral persistence. Using multiple 
cohorts of vertically-infected CLWH, a higher relative 
abundance of gut bacterial taxa Clostridium coccoides, 
Staphylococcus, Clostridium perfringens, Succinivibrion-
aceae, and Lachnospira were associated with elevated 
counts of systemic CD4 + T cells [15, 50, 73].

While the influence of the gut microbiome on CD8 + T 
cell functionality in CLWH has not been characterized 
yet, taxa such as Lachnospira have been associated with 
an elevated frequency of CD8 + memory T cells [73]. 
Humoral immunity, especially B cell functionality and 
non-neutralizing antibody functions has been associated 
with improved HIV control in the pediatric population 
[80, 81]. However, the relationship between gut micro-
biome and HIV-specific humoral immune responses has 
not been characterized in CLWH. Owing to the relatively 
immature adaptive immune response in children, innate 
immune cell functionality is crucial for achieving HIV 
control. While studies characterizing innate immune cell 
functionality in PECs are currently lacking, these cells 
were shown to be influenced by gut microbial species. 
For instance, in a cohort of CLWH, Ruminococcus was 
negatively associated with the NK cell population [73]. 
Additionally, gut bacterial taxa such as Lachnospira and 
Ruminococcus dampened overall immune inflammation 
in CLWH [49, 73]. To determine whether these associa-
tions are indicative of any causal relationships, further 
intervention studies delineating the role of these com-
mensal bacteria on the HIV reservoir in the pediatric 
population will be needed. Profiling the gut microbiome 
of PECs might also be crucial to understanding the role 
of commensals on HIV persistence. However, one should 
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be cautious in interpreting the data, as viral control due 
to the pre-existent immune and genetic features in PECs 
[67, 68] might contribute to an altered gut microbial pro-
file in this population. In this scenario, non-human pri-
mate models of viral infection where the temporal nature 
of gut microbial evolution and establishment of HIV res-
ervoir can be studied in parallel could be instrumental.

Microbial modulation as a potential therapy to achieve 
pediatric HIV remission
The intestinal microbiome of children is most plastic 
during the first 2–3 years of life, when it can be shaped 
by external factors such as diet and environmental expo-
sure. It is believed that the mother’s womb is mostly 
sterile and the first microbial seeding of an infant starts 
during birth. However, several groups have documented 
the possibility of microbial colonization in utero by dem-
onstrating the presence of microbial communities in the 
placenta, amniotic fluid, and meconium [8, 82, 83]. As 
the baby descends through the birth canal, bacterial taxa 
such as Lactobacilli and Bifidobacteria, commonly found 
in the mother’s vaginal tract, colonize the baby’s intes-
tine by entering through their mouth [84, 85]. Therefore, 
the mode of delivery of the baby is a crucial predictor of 
their gut microbial profile. Babies delivered by Cesarean 
section exhibit an abundance of bacterial taxa obtained 
from their mother’s skin and the environment, includ-
ing Clostridiodes difficile, Staphylococcus, Corynebacte-
rium and Propionibacterium [86, 87]. After parturition, 
an infant’s gut microbial community drastically develops 
and is influenced by factors such as skin-to-skin contact 
and breastfeeding vs. formula feeding. Compared to for-
mula-fed, breastfed infants exhibit an abundance of Lac-
tobacillus and Bifidobacterium species [88], which evolve 
to a Bacteroides- and Firmicute-rich phenotype upon 
introduction of solid food [89]. Upon weaning, a child’s 
gut microbiome rapidly undergoes maturation for the 
first 2–3 years of life, leading to a more stable adult-like 
microbiome [90]. Therefore, the period when the micro-
biome of a child is most dynamic might be the window 
of opportunity when microbiota-targeted interventions 
can modulate the child’s intestinal microbiome composi-
tion and build a metabolic and inflammatory condition 
that could potentially reduce HIV replication and persis-
tence. Similar to adults living with HIV [91, 92], several 
gut microbiome-targeted approaches have been inves-
tigated in CLWH, with an aim to alter their gut micro-
biome and associated immune phenotypes. In a pilot 
placebo-controlled double-blinded study in CLWH [56], 
nutritional supplementation with PMT25341, a mixture 
of probiotics (Saccharomyces boulardii), prebiotics (long 
chain fructo-oligosaccharides, galacto-oligosaccharides) 
and supplements such as essential amino acids (arginine 

and glutamine), long chain fatty acids (eicopentaenoic 
and docosahexanoic acid), vitamin D and AM3, a gly-
copeptide produced by Ricinus communis was shown to 
restore the gut microbial imbalance caused by HIV infec-
tion, suggesting the feasibility of modulating the micro-
bial composition in a pediatric population. The impact of 
this nutritional supplement on alterations of gut micro-
biome composition has also been shown in adults living 
with HIV [91], where the PMT25341 intervention group 
demonstrated enrichment of anti-inflammatory bacterial 
taxa that are depleted among CLWH [57]. However, this 
nutritional supplementation did not result in immune 
modulation among children [73]. In contrast, short-term 
oral probiotic therapy with milk containing bacterial spe-
cies including Bifidobacterium bifidum, Streptococcus 
thermophilus, Lactobacillus casei Shirota (LcS), Lacto-
bacillus sporogens and Lactobacillus plantarum IS-10506 
resulted in modulation of the maturing immune sys-
tem of CWLH, including an increase in the frequency 
of peripheral CD4 + T, Th17 and Th2 cells, decrease in 
activated CD8 + T cells [93–95], and reductions of bac-
terial translocation marker, blood lipopolysaccharide 
(LPS) [96], and HIV plasma viral load [93]. Probiot-
ics are clinically safe for most individuals [97], result 
in improved nutrition and growth in CLWH [93] and 
lead to persistent intestinal bacterial colonization with 
the administered organism [98]. In a pilot double-blind 
placebo-controlled study, oral capsular fecal microbial 
transplantation (FMT) of adults living with HIV dem-
onstrated changes in the intestinal microbial composi-
tion to a phenotype observed in people without HIV and 
alterations in markers of intestinal injury [99, 100]. While 
FMT studies have not yet been conducted in CLWH, this 
gut modulation approach has been successfully applied 
for the treatment of several gastrointestinal diseases in 
children such as Clostridiodes difficile infection (CDI), 
ulcerative colitis and Crohn’s disease, where stool from 
healthy donor children of the same age and unrelated 
to the patient was used [101, 102]. This approach has 
been found to be safe in children [102]. In a retrospec-
tive study using 372 patients aged 11 months to 23 years, 
FMT to treat CDI was shown to be comparably safe and 
efficacious among children and young adults [103]. Taken 
together, these studies highlight the feasibility of modu-
lating the gut microbiome of CLWH immediately after 
HIV diagnosis to a phenotype that might reduce HIV dis-
ease progression and interfere with HIV persistence by 
generating an anti-HIV immune system (Fig. 1).

Conclusions
The gut microbiome of an individual evolves and matures 
for the first 3 years of life, before achieving a stable adult-
like phenotype. As the microbiome develops in a child, 
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it also influences immune ontogeny. Therefore, under-
standing the interactions of the continuously evolving 
microbiome and maturing immunity in CLWH can be 
used to guide the development of strategies to achieve 
ART-free HIV control in the pediatric population. Here, 
we have reviewed the specific components of an early-
life microbiome and immune responses in CLWH that 
might be exploited to reduce HIV persistence. Finally, we 
have discussed the currently used approaches of micro-
bial modulation in this population that lead to altered 
immune phenotypes. Building a gut microbiome during 
early life that can reduce HIV persistence and improve 
anti-HIV immunity might be a promising approach to 
achieving ART-free long-term HIV control in the pediat-
ric population.
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