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Abstract
Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved 
in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell 
types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 
3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes 
between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured 
in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after 
activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from 
studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or 
patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, 
we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. 
Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome 
control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different 
(Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity 
to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different 
pathological conditions will lead to greater understanding of the physiological role of HERV expression in health 
and disease.
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Introduction
Approximately 8% of the human genome consists of 
human endogenous retroviruses (HERVs) [1]. Many 
HERVs contain both 5’ and 3 long terminal repeats 
(LTRs) that can promote transcription [2, 3]. Some of 
these LTRs are solo LTR sequences that are shorter in 
length and have the potential to promote the transcrip-
tion of neighboring host genes [4–8]. Jacques et al. found 
that a disproportionate number of LTRs are present in 
cell type-specific DNase I hypersensitive sites, indicat-
ing accessible chromatin regions for transcription [9]. 
Autonomous LTRs contain nearly full-length proviral 
transcripts that encode gag, pol, env, and, sometimes, 
additional accessory genes [3, 10, 11]. Even though most 
do not produce complete proteins due to the accumula-
tion of mutations over the course of evolution, there is a 
growing recognition that these HERV RNA transcripts 
may play a role in the innate host response [12, 13].

Further understanding of the expression of the autono-
mous proviral HERV transcriptome in both normal and 
disease states is needed to evaluate their contribution 
to the networks of gene expression in the host [14]. One 
of the challenges in characterizing the HERV transcrip-
tome is the number and lack of heterogeneity of HERV 
genes, which makes it difficult to distinguish changes 
in transcription [10]. To circumvent this issue, previous 
studies have identified a dataset characterizing the posi-
tion and gene content of approximately 3220 individual 
proviral HERV loci [3, 10]. Several studies have used this 
dataset to map HERV loci in cell lines and primary cells, 
showing cell type specific HERV loci transcriptomes [3, 
10, 15–17]. Additional analysis using RNA-seq data-
bases reported that the HERV loci transcriptome pat-
terns in peripheral blood mononuclear cells (PBMCs) 
from patients with COVID-19 differed from those of 
uninfected patients, leading to the suggestion that the 
expressed HERV loci could act as sentinels for the innate 
host response to viral infections [12].

Human PBMC consists of a consortium of immune 
system cells that include, at a minimum, T cells, B cells, 
monocytes (CD14+), dendritic cells and natural killer 
cells [18, 19]. Given that the analysis of active HERV loci 
transcription is dependent on cell type, using specific 
subsets of PBMCs could provide new insights into HERV 
expression in these immune cells. Since CD14 + mono-
cytes are a major cell type involved in innate immunity, it 
is important then to compare the expression patterns of 
HERV transcription in these cells between normal indi-
viduals and patients with perturbations known to stimu-
late CD14 + monocytes [20–22]. In the current study, we 
downloaded publicly available PBMC-related single-cell 
RNA sequencing (scRNA-seq) datasets and analyzed 
them to identify HERV loci and compare HERV profiles 
among samples. For the analysis, we utilized existing 

informatics tools such as Seurat [23] and 10X Cell Ranger 
[24] and developed our informatics tool to cluster DNA 
sequences at 99% identity and map them onto 3,220 spe-
cific HERV loci in CD14 + monocytes. Using this pipeline, 
we characterized the impact of PBMC isolation meth-
odology on the detection and reproducibility of identi-
fied HERV loci transcriptomes. We then analyzed the 
HERV loci transcriptomes from studies that have shown 
activated CD14 + monocytes: PBMC activated in vitro 
by LPS and PBMC from separate datasets of patients 
with physical trauma or from patients hospitalized with 
COVID-19 [25, 26]. We also developed a pangenome 
control RNA-seq dataset consisting of a composite of 
21 normal individuals to identify HERV loci transcrip-
tomes that were shared or specific in the host follow-
ing trauma or COVID-19 infection. The identification 
of shared and unique HERV loci transcriptome patterns 
in CD14 + monocytes between individuals with different 
pathological conditions will provide new perspectives 
on the role of CD14 + monocyte HERV transcriptome 
expression in the innate immune response.

Results
Previous studies have identified 3,220 autonomous pro-
viral HERV loci throughout the human genome that are 
distributed throughout the 23 human chromosomes [3, 
10] (Fig.  1, Supplementary Table 1). Most of these pro-
viral HERV genomes contain intact 5’ and 3’ long ter-
minal repeats that would promote transcription with a 
disproportionate number of LTR‘s located in accessible 
chromatin regions for transcription [3, 9]. However, pre-
vious studies examining the HERV transcriptome have 
demonstrated that only a fraction of the HERV loci are 
expressed under various physiological conditions and 
diseases [10–12, 15, 27–29]. Therefore, to understand 
the role of HERV transcription in normal and pathologi-
cal conditions, it is important to compare the modulation 
of individual HERV loci transcriptomes across different 
pathological conditions.

In the current study, we modified our previous 
informatic method to align 3,220 HERV loci for each 
scRNA-seq dataset to determine the common or unique 
transcription patterns in HERV loci (Supplemental Meth-
ods [30]), . The new method, called Window-based HERV 
Alignment (WHA), compares aligned DNA sequences 
in pairs using sequential, non-overlapping windows of 
defined nucleotide lengths 99% alignment requirement. 
Thus, our positive designation of a HERV loci transcrip-
tome reflects increased transcription, analogous to a 
positive differential gene expression, as described for the 
3,220 HERV loci [10, 12, 15]. HERV loci designated as 
negative do not meet the required read depth or number 
of usable (good) windows as determined by WHA.



Page 3 of 12Koo and Morrow Retrovirology           (2024) 21:17 

A unique feature of our study is the use of WHA on 
scRNA-seq datasets combined with informatic tools 
to identify the transcriptomics of unique HERV loci in 
CD14 + monocytes (Supplementary Fig. 1) [23]. To char-
acterize this analysis, we selected a unique scRNA-seq 
dataset of CD14 + monocytes from paired PBMC samples 
from the same donor that were prepared from fresh (i.e. 
not stored) and those samples from the same donor that 
were frozen before use [26] (Fig. 2). We identified individ-
ual specific transcribed HERV loci from the repeat sam-
ples from the same individual (rep1A, rep1B, or rep2A 
rep 2B). A heatmap was used to depict the HERV abun-
dances that were positive. We found that individual sam-
ples prepared in the same way (either fresh or frozen) had 
a similar distribution of HERV loci (Fresh samples: 82.5–
84.2% and Frozen samples: 92.9–100%) (Fig.  2A). Using 
a phylogenic tree analysis, we found that the individual 

samples (1 and 2) prepared the same way (fresh or fro-
zen) were on separate branches of the phylogenetic tree 
within the same branch, and the individual samples were 
located on different branches of the phylogenetic tree 
(Fig. 2B). Finally, the PCA analysis revealed a difference 
in the clustering between the fresh and frozen samples. 
Interestingly, we found that the individual specificity of 
the HERV loci for 1 and 2 was more apparent in the fresh 
samples, while both individuals in which samples were 
prepared frozen samples clustered together (Fig.  2C). 
To ensure that this clustering was not due to differences 
in sample read numbers, we repeated the analysis with 
equal read numbers per sample (randomly subsampled) 
and confirmed that there were no changes in the phylo-
genetic tree or PCA plot following the random subsam-
pling process (Supplementary Fig.  2). The results show 
that the reproducibility of the analysis and that the HERV 

Fig. 1  Distribution of HERV proviral loci in human chromosomes
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loci transcriptome is individual specific and sensitive to 
the method of PBMC sample preparation.

To determine if our analysis protocol could be used to 
detect HERV loci from activated CD14 + monocytes, we 
next used a second dataset in which a single individual 
PBMC was divided into 4 sample sets in which one pair 
served as a control and a second pair was stimulated with 
LPS, a known stimulant for CD14 + monocytes [20, 26]. 
All 4 PBMC datasets of individual scRNA-seq were ana-
lyzed and the sequence reads for CD14 + monocyte reads 
were subjected to WHA analysis. We filtered the WHA 
results to identify HERV loci that were expressed in acti-
vated but not resting cells. For this result, we presented 
only those loci that were the pair from LPS stimulated 
samples that were both positive for transcription. We 
identified 36 HERV loci in CD14 + monocytes that were 
detected only after stimulation with LPS (Supplementary 
Table 2). Six chromosomes (2, 3, 4, 10, 12 and 17) were 
identified with the greatest numbers of HERV loci that 

were differentially expressed in activated cells (Supple-
mentary Table 3). Chromosome 2 had the most identified 
HERV loci that were expressed in the activated but not 
resting CD14 + monocytes. We also found that these sites 
were surrounded by HERV loci that were not expressed 
following LPS stimulation. Overall, the results from this 
paired sample dataset establish the utility of our analy-
sis to detect HERV loci transcription from resting and in 
vitro (LPS) activated CD14 + monocytes.

A recent study described an extensive database called 
DISCO (Deeply Integrated Single-Cell Omics data) that 
allows large-scale integration of scRNA-seq data [31]. 
Many of the studies in DISCO are in PBMC that ana-
lyzed frozen PBMC that did not undergo in vitro stimula-
tion. To extend our analysis of the HERV transcriptome, 
we used two extensive scRNA-seq datasets from studies 
where in vivo activation of CD14 + cells was found; one 
study examined the impact of physical trauma while 
a second study examined patients hospitalized with 

Fig. 2  Impact of PBMC preparation on the detection of positive HERV loci. A scRNA-seq dataset of paired PBMC samples from the same donor that were 
prepared from fresh (not frozen) and those samples from the same donor that were frozen prior to use [26]. We sorted sequences for CD14 + monocytes 
and analyzed output file to conduct the WHA. A Heatmap of positive HERV loci detected from PBMC. Individual specific transcribed HERV loci the repeat 
samples (rep1A, rep1B, and rep2A rep 2B) are presented. The percent similarity for the paired fresh samples: 82.5–84.2% and frozen samples: 92.9–100%. 
B Phylogenetic tree of the PBMC prepared fresh after isolation versus frozen. phylogenetic tree shows the individual similarity of the repeat samples and 
differences between fresh and frozen from the same individual. C Clustering of positive HERV loci from fresh or frozen sample sets. A PCA of illustrates the 
clustering between the fresh and frozen samples and highlighting the individual specificity of the HERV loci identification
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COVID-19 infections [25, 32] (Supplementary Table 
4). Both studies included PBMC isolated from normal 
individuals that served as controls. We first filtered the 
CD14 + monocyte sequences from the patients and con-
trols associated with each study. We identified HERV loci 
that were not transcribed in the normal individual con-
trols for each study but were transcribed in at least 1 of 
the patients (either physical trauma or COVID-19). We 
identified 15 discrete HERV loci in patients with physical 
trauma that were not found in the 10 samples from con-
trol individuals. From the COVID-19 patients, we identi-
fied 113 discrete loci that were not found in the 6 control 
subjects (Fig.  3). 10 of the transcribed HERV loci were 
shared between the trauma and COVID-19 sample sets 
(Fig. 3, Supplemental Table 5).

A concern for using only the study specific normal 
individuals for controls is the variability between the 
numbers of individuals, and hence the total number of 
DNA sequence reads, for CD14 + monocytes between 
different studies. To illustrate this point, we compared 
the transcribed HERV loci of the COVID-19 and trauma 
samples with either the control samples from the trauma 
or COVID-19 study (Fig.  4, Supplementary Table 6). 
We found that the number of unique and shared HERV 
loci between the COVID-19 and trauma samples var-
ied depending on the control dataset that was used. 
For example, the number of discrete HERV loci in the 
COVID-19 samples compared to the trauma samples was 
53 if we only used the control samples from the COVID-
19 dataset but 231 if we used the control dataset from the 
trauma dataset (Fig. 4). Similar differences in the pattern 

of unique HERV loci were identified in the trauma data-
sets, as well as in the shared HERV loci between the 
COVID-19 and the trauma datasets. The results highlight 
the dependency of HERV loci identification on the num-
ber of control samples used in the analysis.

To circumvent this issue, we established a composite 
pangenome of control samples consisting of the study 
controls plus an additional 5 normal PBMC samples giv-
ing a total of 21 normal human controls [33, 34]. Follow-
ing WHA, we identified the negative and positive HERV 
loci of the 21 composite samples from normal individuals 
and the trauma or COVID-19 datasets (Supplementary 
Table 7). To further characterize this result, we found that 
the sequential addition of control samples up to 1.625 bil-
lion reduced the number of negative loci that eventually 
leveled off 15 HERV loci even with the addition of new 
reads from other control samples (Fig. 5A). We next used 
manual filtering of the Excel file in Supplementary Tables 
7 to identify HERV loci transcriptomes only expressed in 
the trauma datasets (Supplementary Table 8). Interest-
ingly, the 15 loci were found in 5 individuals who had a 
previous motor vehicle collision (MVC) while no positive 
HERV loci were found in the remaining 5 that did not 
have an identified MVC. A similar strategy was employed 
for the 21 pangenome of the control samples compared 
with the combined (live and dead) COVID-19 dataset. 
In this case, we determined the HERV loci detected lev-
eled off at 125 unique HERV loci at 1.32  billion reads 
with the sequential addition of 300  million sequence 
reads up to 1.625  billion reads giving a final HERV loci 
of 113 (Fig. 5B). From the analysis of both the COVID-19 

Fig. 3  Venn diagram of positive HERV loci in CD14 + monocytes from samples obtained from patients after physical trauma or hospitalized from COVID-
19. Two scRNA-seq datasets from studies where in vivo activation of CD14 + cells were used: one study that examined the impact of physical trauma while 
a second study examined patients hospitalized with COVID-19 infections [25, 32] (Supplemental Table 4). A Venn diagram was generated to depict the 
similarities and differences between the HERV loci detected from each study. From the trauma dataset, 15 discreate HERV loci in patients with physical 
trauma that were not found in the 10 samples from control individuals. From the COVID patients, 113 discreate loci that were not found in the 6 control 
subjects (Supplemental Table 5). 10 of the transcribed HERV loci were shared between the trauma and COVID-19 sample sets. The identification of the 
sites is presented in Supplemental Table 5. The 10 HERV loci that were shared between the two studies are also presented
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patient datasets, we found that 113 HERV loci were iden-
tified that were absent from the control (Supplementary 
Table 8).

For both the trauma and COVID-19 analyses we found 
individual specific patterns of the HERV loci transcrip-
tomes expression. For the trauma patients, we noted indi-
vidual specific patterns of the positive HERV loci with 1 
individual with 8 loci and the rest of the individuals with 
1–4 loci (Supplementary Table 8). We found the datas-
ets from the living COVID-19 patients had 2 individuals 
with over 20 loci, 2 individuals with 12 loci, 1 individual 
with 9 loci, and the remaining 2 individuals with ranges 
from 4 to 8 loci. We found from analysis of the patients 
that died after 7 days had 1 individual with 46 loci, 1 

individual with 18 and the rest of the individuals with 
1–13 loci. The differences between the HERV loci tran-
scriptome expression patterns in the trauma or COVID-
19 samples versus the controls did not correlate with the 
DNA sequence read count (Supplemental Fig. 3).

Those HERV loci identified with 2 more plus were sub-
jected to a statistical analysis comparing the sequence 
read depth with the pangenome control read depth at 
the same loci (Supplemental Tables 9 and 10). Using a 
Mann-Whitney U test, we found that all HERV with 2 or 
more positive identified in the 11 MVC and 39 COVID-
19 HERV loci were different from the controls (p < 0.05). 
We identified 9 HERV loci that were shared between 
the trauma and COVID-19 patients. No shared pattern 

Fig. 4  Venn diagrams of positive HERV loci identified from patients with trauma or hospitalized with COVID-19 using different control samples. The analy-
sis of the transcriptome of HERV loci for the datasets presented in Fig. 4 used the specific control samples for each study. The trauma samples were filtered 
with the COVID-19 controls while the COVID-19 samples were filtered with the trauma control sample set. A The trauma samples were filtered against the 
COVID-19 controls and the numbers of unique and common HERV loci were identified. B The COVID-19 samples were filtered using the trauma control 
samples and the number of unique and common HERV loci sties were identified
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Fig. 5  Pangenome control for identification of positive HERV loci. A For the composite 21 normal pangenome control versus the trauma dataset, we 
determined that 162 out of a possible 3,220 HERV loci were positive. From a plot of the negative HERV loci versus the number of DNA sequence reads, 
we found that the sequential addition of control samples up to 1.625 billion reduced the number of negative loci that leveled off at 15 HERV loci. B A 
similar strategy was employed for the composite 21 pangenome control panel versus the combined (live and dead) COVID-10 dataset. In this case, we 
determined out of a total of 261 loci with at least 1 positive comparing the pangenome with the COVID-19 dataset. After filtering the sequential addition 
of sequence reads up to 1.625 billion reads with the COVID-19 dataset we found the negative HERV loci leveled off at 113
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of predicted canonical HERVs between these shared 
9 HERV loci was evident [3] (Supplemental Table 11). 
Since we used the same control dataset for the trauma 
and COVID-19 datasets, we mapped the distribution of 
the HERV loci over the 23 human chromosomes (Fig. 6). 
Chromosomes 2 and 3 had the most HERV loci (range 
4–7 loci/chromosome) while the remaining chromo-
somes had a range of 1–4 loci (Fig. 6). The distribution of 
the HERV loci in the 23 chromosomes did not correlate 
with host genes identified in which transcription was sig-
nificantly increased in activated CD14 + monocytes [25, 
32].

Discussion
In this study, we have examined the patterns of autono-
mous HERV loci transcriptomes in normal and acti-
vated cells. Using scRNA-seq datasets from PBMC, we 
have used informatic tools, Seurat and 10X Cell ranger 

to identify clusters of CD14 + monocytes. The DNA 
sequence reads from CD14 + monocytes were aligned 
to 3220 autonomous HERV loci to identify HERV loci 
transcriptomes. We demonstrated that the transcrip-
tome pattern of HERV loci in CD14 + monocytes was 
specific for the individual and reproducible between 
paired samples prepared by the same method for scRNA-
seq.  We developed a composite 21 normal individual 
pangenome control panel to identify HERV loci that were 
preferentially expressed in activated, but not quiescent, 
CD14 + monocytes from patients that had undergone 
physical trauma and patients infected with COVID-19.

Previous studies have identified approximately 3,220 
autonomous proviral HERV loci that are distributed 
throughout the 23 human chromosomes [3, 10]. Most 
of these autonomous proviral genomes contain intact 5’ 
and 3’ LTR that would promote transcription to express 
RNA [3]. The challenge for mapping of HERV loci 

Fig. 6  Chromosome distribution of positive HERV loci identified from the trauma or COVID-19 datasets. The distribution of the HERV loci in the 23 human 
chromosomes and expressed host cell genes in CD14 + monocytes were depicted using Idiographica [52]. We did not find a transcribed HERV loci in 
chromosomes 11, 18, and 21. Chromosomes 2 and 3 had the most HERV loci (range 4–7 loci/chromosome) while the remaining chromosomes had a 
range of 1–4 HERV loci per chromosome
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transcription is that many of the HERV loci contain the 
same consortium of genes resulting in repetitive DNA 
from scRNA-seq [35]. Other studies have used different 
informatics techniques and methods to map transcribed 
RNA to the 3220 ERV loci in PBMC [3, 10, 15]. However, 
PBMCs are composed of several different immune cell 
types [18]. The results of our study are unique because 
we analyzed the transcriptome of HERV loci from 
CD14 + monocytes. To do this, we developed informat-
ics tools used to identify specific cell clusters (Seurat 
and 10X Ranger) and adapted our previous informatics 
technique (WSS) to evaluate HERV loci transcriptomes 
from CD14 + monocytes [30, 36]. We then applied sev-
eral filtering steps to identify those HERV loci that had 
increased transcription compared to the same HERV 
loci from the control sample. It is important to note that 
because of our sequence alignment constraints (i.e. 99% 
identity) and our filtering steps, our data reflects the 
patterns of the highest expressed HERV transcriptomes 
from the individual 3,220 proviral HERV loci compared 
to the same HERV loci of control samples from normal 
individuals.

To characterize our analysis pipeline, we analyzed the 
HERV loci transcriptomes from a unique scRNA-seq 
dataset that contained paired samples [26]. We found 
that the analysis was reproducible, as evident from the 
similarity of the patterns of the HERV loci transcrip-
tomes between the paired samples of the same individual. 
The patterns of HERV loci transcriptomes were individ-
ual specific as evident from the comparison of the freshly 
prepared samples from two different individuals, a result 
that is consistent with a recent study that used a compre-
hensive single cell analysis to show immune cell diversity 
between individuals [19]. The processing of the PBMC 
samples can influence the number of transcribed HERV 
loci as evident from the different patterns of HERV loci 
transcriptomes from matched frozen and fresh, paired 
samples. Interestingly, the sample prepared from the 
paired frozen PBMC had fewer positives than the fresh 
samples. Previous studies have observed that freeze/
thawing is known to damage cells, possibly leading to 
RNA instability [37–39]. Since the majority of the tran-
scribed HERV loci do not encode RNA’s that are trans-
lated they might also be more susceptible to degradation 
[3]. The results of our studies then highlight the repro-
ducibility of our analysis pipeline and the importance of 
using sample sets that have undergone the same method 
of sample preparation when comparing the patterns of 
the HERV loci transcriptomes.

The goal of our study was to identify HERV loci that 
could be used to discriminate resting from activated 
CD14 + monocytes. In the first step, we used a paired 
dataset using similarly processed control and LPS stimu-
lated PBMC from the same individual [26]. LPS is known 

to be a potent stimulator of CD14 + monocytes, prob-
ably due to the cells having a receptor for LPS [21]. We 
identified 36 HERV loci in CD14 + monocytes that were 
detected only after stimulation with LPS. Six chromo-
somes (2, 3, 4, 10, 12 and 17) were identified with the 
greatest numbers of HERV loci that were differentially 
expressed in LPS activated cells.

We next extended our approach to analyze in vivo 
CD14 + monocytes from PBMC that were prepared by 
the same method (i.e. from frozen samples). Previous 
studies have found that trauma causes an abrupt transi-
tion from a healthy state to a system-wide physiological 
crisis characterized as a genomic storm in PBMC [32, 40, 
41]. The dataset selected for our study was used by Chen 
et al. that found after systemic injury the gene expression 
pattern of CD14 + monocytes was different from con-
trol samples [32]. We identified 15 discrete HERV loci in 
CD14 + monocytes from patients with physical trauma 
that were not found in the 10 samples from control 
individuals. In a second study, Amrute et al. found that 
CD14 + monocyte transcription patterns were associated 
with and predicted survival from COVID-19 infection 
[25]. Using the scRNA-seq dataset from these COVID-19 
patients, we identified 113 discrete loci in CD14 + mono-
cytes that were not found in the 10 control subjects [25]. 
For both studies, we found that not all samples from all 
of the individuals in either study were HERV loci posi-
tive. Since a previous study has used single cell analy-
sis to show that substantial diversity exists between the 
immune cell profiles of individuals, the distribution of 
positive HERV transcriptomes in the scRNA-seq datasets 
could reflect the differences in the physiologic status of 
the individual’s immune system [19].

We found that 10 of the transcribed HERV loci were 
shared between the trauma and COVID-19 sample sets 
using the normal control samples provided for each 
study. However, substituting the normal dataset from 
one study with another resulted in an altered pattern of 
the HERV loci transcriptomes indicating the HERV loci 
specific for the trauma or COVID-19 was dependent on 
the control dataset used for comparison. To circumvent 
this issue, we developed a composite pangenome con-
trol panel consisting of 21 normal individual pangenome 
control consisting of over 1.625  billion sequence reads 
that could be used to more directly compare the HERV 
transcription loci from a dataset of patients post physical 
trauma and the patients with COVID-19 [33]. Using this 
composite pangenome control, we found for the trauma 
patients 15 discrete ERV loci that were negative in the 
controls. Interestingly, the 15 loci were only found in 5 
individuals who had a previous motor vehicle collision 
(MVC) while the remaining 5 with no positive HERV 
loci were found in those individuals with other trauma. 
The expression of HERV loci in CD14 + monocytes from 
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patients who had MVC is consistent with previous stud-
ies that have found that physical trauma can increase 
gene expression in CD14 + monocytes, supporting future 
studies to extend this result using datasets from individu-
als following other traumas [41].

From the analysis of the COVID-19 patients, we found 
that 113 HERV loci were identified that were absent from 
the pangenome control. The fact that the COVID-19 
samples had greater numbers of the HERV loci is consis-
tent with the samples from patients who were hospital-
ized with COVID-19 infection, which is known to result 
in a strong immune response [32, 40–43]. Furthermore, 
we observed a trend that the hospitalized patients who 
subsequently died had greater numbers of the HERV 
loci with positive transcriptomes than those patients 
who survived, a result that is consistent with Brauns et 
al.. who found that severe COVID-19 infection has an 
impact on the differentiation status and function of cir-
culating monocytes [44]. Grandi et al. also found differ-
ences with the HERV loci with respect to the status of the 
patients after COVID-19 infection [12]. A comparison of 
the HERV loci identified from our study and the Grandi 
et al. study revealed differences that could be accounted 
for by the source of the PBMC dataset since the Amrute 
et al. dataset used hospitalized patients while Grandi et 
al. study used convalescent patients. In addition, the 
Grandi et al. studies use datasets from PBMC consisting 
of T cells, B cells and monocytes and would be expected 
to be different from the CD14 + monocytes used for our 
analysis.

Finally, we identified 10 HERV loci that were common 
between the MVC trauma and the COVID-19 dataset 
when compared to the pangenome control. It is possible 
that the HERV transcriptome expression from these 10 
loci identifies a core group of activated CD14 + mono-
cytes that could be part of the trained immunity pro-
grams that have been identified in CD14 + monocytes 
[45]. In future studies to further explore this possibil-
ity, we could extend our approach to compare other 
immune-related diseases such as systemic lupus erythe-
matosus or even cancer [10, 27–29]. To do this we use the 
21-composite individual pangenome and even add to this 
panel with more control samples from the new studies. 
Comparison of specific patterns of HERV loci transcrip-
tomes in CD14 + monocytes from patients with differ-
ent immune related diseases then could provide insights 
that could lead to a greater definition of the role of HERV 
transcriptomes in the innate immune response [2, 13].

Materials and methods
Dataset used in this study
In this study, we used 4 publicly available scRNA-seq 
PBMC datasets from (1) 3 healthy individuals from 
Thompson, E.A., et al. [34], (2) 2 healthy individuals from 

Derbois et al. [26], (3) 6 healthy individuals and 12 critical 
COVID-19 patients who survived (n = 6) or died (n = 6) 
on both days 0 and 7 of study enrollment from Amrute 
et al. [25]. and (4) 10 healthy individuals and 10 trauma 
patients from Chen et al. [32]. Accession numbers for 
samples used in this study are below the Data availability 
section.

scRNA-seq analysis
Publicly available scRNA-seq PBMC data were down-
loaded in either fastq or bam format, whichever is 
available from NCBI GEO or SRA. Each bam file was 
converted into fastq format using 10x Genomics Cell 
Ranger software (v 7.1.0) bamtofastq (v 1.4.1). All fastq 
files were then aligned to the human reference genome 
(GRCh38) using Cell Ranger count with default param-
eter settings. For each sample, CD14 + monocytes were 
selected based on matrixes files provided by primary 
publication, or matrixes (.rds format) from the Deeply 
Integrated human Single-Cell Omics data (DISCO) [31], 
or matrixes generated by the SingleR package using the 
Database of Immune Cell Expression (DICE) reference 
dataset [46]. Barcodes associated with CD14 + monocytes 
were listed in .txt format and used to select sequence 
reads containing these barcodes from the .bam files using 
samtools (v 0.1.19). The resulting .bam files were then 
converted to .fastq filed using bedtools (v 2.26.0) (Supple-
mentary Fig. 1).

HERV analysis
Processed fastq files were used to conduct our WHA 
tool (Supplementary Methods). Each sample was dupli-
cated for the WHA analysis and then mapped with 3,220 
HERV loci as reference data using BWA with minimum 
percent match > 99% (v 0.7.13). HERV loci that had 100% 
WSS scores were only selected as positive for the HERV 
loci. We defined a HERV loci transcriptome as negative if 
it had any HERV loci with a sequence depth of less than 3 
or usable windows of less than 9. Conversely, HERV loci 
transcriptomes defined as positive had a sequence read 
depth greater than 3 and usable windows of greater than 
or equal to 9, corresponding to a minimum of 450 base 
pairs (i.e. 9 windows times 50 base pairs).

The HERV profiles between PBMC fresh and frozen 
samples from Derbois et al. were compared, and the 
resultant output was visualized in a Principal Compo-
nent Analysis (PCA) plot using ClustVis [47]. To support 
the PCA plot, a phylogenetic tree was generated with 
the ‘normalize’ and ‘Euclidean’ options using R. A heat-
map was also generated to display differences in HERV 
loci at across each sample using STAMP [48]. We also 
randomly subsampled sequence reads from both PBMC 
fresh and frozen samples and generated a PCA plot and 
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phylogenetic tree to compare the results between the 
original reads and subsampled reads (Supplemental 
Fig. 2).

Additional manual filtering steps using the Excel files 
were applied across all the samples to determine HERV 
loci that were unique when all control samples were com-
pared with either COVID-19 or MVC samples (Supple-
mental Table 8). To do this, only negative values were 
selected for the 21 control samples, and then at least 
one positive value remained for the COVID-19 or MVC 
samples. Then, the Venn diagrams were generated to 
represent the shared and unique HERV loci between (1) 
all controls vs. COVID-19, (2) all controls vs. MVC, (3) 
COVID-19 control vs. MVC, and (4) MVC control vs. 
COVID-19 using the gplots [49] and the VennDiagram 
packages in R [50].

Statistical analysis
To determine significant differences in sequencing depth 
between control vs. either COVID-19 or MVC for each 
HERV loci, we conducted Mann-Whitney U test using R 
[51]. For this analysis, a P value of < 0.05 was considered 
statistically significant.

The positions of 3220 HERV proviral genomes in the 
human 23 chromosomes is depicted using Idiographica 
[52]. The individual HERV loci sequence identification 
can be found in Supplementary File 1.

A composite 21 normal individual pangenome con-
trol dataset was established using the control samples 
from the trauma, COVID-19 and an additional 5 normal 
PBMC samples [33] (Supplementary Table 4).
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The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
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